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Abstract

The walking droplet experiment has received particular attention in the last fifteen years be-
cause it represents the first known example of a macroscopic pilot-wave system that exhibits
behaviours thought to be exclusive to the microscopic quantum realm. Most efforts about
walking droplets have focused on the experimental analysis in a "fluid mechanics" framework
and on its mathematical modeling.
On the other hand, the stadium billiard, one of the first 2D concave chaotic geometries intro-
duced by Bunimovich, has been actively studied for these last decades because of the drastic
differences observed between classical and quantum particles behaviour in such geometry.
Consequently, the objective of this master thesis is to analyze the behaviour of walking droplets
inside the Bunimovich stadium billiard and compare it with the behaviours of classical and
quantum particles in similar conditions. To fulfil this objective, a complete low-cost experimental
setup has been developed for the observations of walking droplets, comprising : a fabricated
bath stuck on the membrane of a loudspeaker for the vertical shaking, a 3-axis accelerometer
providing real-time measurements on PC, a droplet generator based on a piezoelectric buzzer
and a fixed camera recording top view images of the droplet motion which are post-processed
with Matlab. The imperfect horizontality of the developed setup is shown to lead to an effective
Faraday instability threshold lower than the scientific consensus for the same forcing parameters
(ΓF,e = 2.3[g] < ΓF = 4.144[g]). As it prevents us to correctly estimate the memory parameter
Me, the conducted experiments are instead described in terms of shaking amplitude Γ and
estimated tilt angles of the bath θ and β. It is observed that the walking droplet long-term
evolution in a stadium billiard presents a clear scarring pattern, informing on the existence of
preferred "probable positions" of the droplet inside the billiard. The scarring pattern, while
very similar to a typical shape found in quantum simulations, is surprisingly much more robust
against forcing variations than the scars observed for electrons.

Keywords: Walking droplet, Stadium, Chaotic, Scar
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Table 1: List of default parameters.

Name Symbol Value [Unit]

Fundamental constants
Gravitational acceleration g 9.81 [m/s2]

Air properties
Air density ρa 1.2 [kg/m3]
Air kinematic viscosity νa 15 [cSt]=[mm2/s]
Air dynamic viscosity µa 1.84 · 10−5 [Pa.s]=[kg.m3/s]
Air density ρa 1.2 [kg/m3]

silicone oil properties
Oil density ρ 0.95 · 103 [kg/m3]
Oil kinematic viscosity ν 20 [cSt]=[mm2/s]
Oil dynamic viscosity µ = ρν 19 · 10−3 [Pa.s]=[kg/m.s]
Surface tension σ 20.6 [mN/m]

Droplet properties
Droplet diameter D [0.4− 1.2] [mm]
Droplet radius R0 = D

2 [0.2− 0.6] [mm]
Droplet mass m = ρ

4πR3
0

3 [3.2− 85.6] · 10−8 [kg]
Characteristic drop oscillation frequency ωD =

√
σ
ρR3

0
[316.8− 1646] [rad/s]

Vertical oscillations and Faraday
Sample rate N 10 000 [−]
Frequency of forcing f0 80 [Hz]
Pulsation of forcing ω0 = 2πf0 160π [rad/s]
Liquid height h0 [6− 11] [mm]
Acceleration peak γm [0− 50] [m/s2]
Non-dimensional acceleration peak Γ = γm

g 0− 5 [−]
Effective gravity gΓ(t) = g(1− Γcos(ω0t)) - [m/s2]
Faraday wavelength λF 4.72 [mm]
Faraday wavenumber kF 1330 [rad/m]
Faraday period TF 25 [ms]
Faraday threshold γF 40.65 [m/s2]
Non-dimensional Faraday threshold ΓF = γF

g 4.144 [−]
Distance to Faraday threshold M = ΓF

ΓF−Γ
[0− (+∞)] [−]

Vanishing viscosity wavenumber [68] k0 = k s.t. ΓF −→ 0 1319.5 [rad/m]
Free damping [68] γ0 = 4νk2

0
ω0

0.277 [−]

Memory [68] Me = M
2πγ0

(
1 + γ

1/2
0
2 + γ0

4

)
[0− (+∞)] [−]

Faraday phase velocity vφF =
√

g
k + σk

ρ 190.8 [mm/s]
Capillary length lc =

√
σ
ρg 1.5 [mm]

Capillary frequency fc =
√

σ
m [155− 805] [Hz]

Vibration number Ω = ω
ωD

[0.049− 0.25] [−]
Bouncing mode (m,n) (-,-) [−]
Drop incoming speed Vin 0.1-1 [m/s]
Drop outgoing speed Vout 0.01-1 [m/s]
Restitution coefficient CNR = Vin

Vout
∼ 0.7 [−]

Adimensional numbers
Bond number = gravitational forces

surface tension forces Bo = ρgR2
0

σ [0.018− 0.163] [−]
Weber number = inertial forces

surface tension forces We = ρR0V
2

in

σ ∼ 0.1 [−]
Ohnesorge number = viscous forces√

inertia · surface tension Oh = µ√
ρσR0

=
√
We
Re [0.175− 0.3] [−]

Stokes drag coefficients cSt = 6πR0µa [6.94− 20.81] · 10−8 [kg/s]



Chapter 1

Introduction

Today, the most widely accepted interpretation of the quantum mechanics equations is the
Copenhagen interpretation [78] which states that physical systems generally do not have definite
properties prior to being measured, and that the measurement’s possible results only obey a
probability distribution that is predicted by quantum mechanics. It stands that this is the
measurement which forces the collapsing of the wave function to only one of the possible
values. However, many other non rejectable interpretations of quantum mechanics have been
proposed. [82] These ones differ on such fundamental questions as whether quantum mechanics
is deterministic or stochastic, which elements of quantum mechanics can be considered real, and
what is the nature of measurement, among other matters. The De Broglie theory (distinguished
from the de Broglie-Bohm association as discussed in [9]), on the contrary of the Copenhagen
interpretation, is a deterministic theory that associates a real pilot-wave that is created by
the particle itself and guides its motion inside the space. It considers that the particle has,
at any time, a definite and real position. This particle’s position is practically unknown, but
can be statistically predicted by the guiding equation. [79] In the De Broglie theory, the wave
function obeying the Schrödinger equation is not real and is only representative of the averaged
behaviours of the particle.

The first example of a macroscopic system exhibiting a wave-particle duality has been raised in
2006 by Couder and his team [22] (find a short movie in [55]). This consists in a silicone oil
droplet bouncing on a vertically vibrated bath, generally sinusoidally. With an appropriate set of
forcing parameters (i.e. frequency and amplitude of the vertical shaking), this droplet can spon-
taneously start "walking" on the liquid surface (i.e. moving laterally) and in this case exhibits
behaviours thought to be exclusive to the microscopic quantum realm such as self-organising
lattice structures, single particle diffraction, quantized orbits, orbital level splitting, tunneling
effects, and wave-like statistics in confined geometries. Given the contrasting behaviour between
classical and quantum particles, one can then naturally wonder whether the droplet "walkers"
behaviour will mimic the classical or the quantum behaviour.

The Bunimovich stadium billiard has received particular attention by the scientific community
for these last decades because of the drastic differences observed between classical and quantum
particles behaviour in such geometry.
On the one hand, the classical ball bouncing elastically on the borders of the stadium tends,
over time, to visit the entire 2D geometry except for some unstable regular orbits. The stadium
billiard is said chaotic due to its exponential sensitivity to initial conditions, leading to practical
impossibility to predict the ball trajectories if there exists even an infinitesimal uncertainty
on the initial conditions (i.e. initial position and speed). As for meteorology, deterministic
systems that are chaotic are usually described by means of statistical tools which can handle

1



Chapter 1. Introduction

the possibility of some uncertainty on the initial state.
On the other hand, quantum particles like electrons show patterns of higher probability of
presence inside the cavity called quantum scars, which curiously look like the unstable regular
orbits of the classical case. This phenomenon is due to the influence of the stadium chaotic
geometry on the wave function, solution of the Schrödinger equation.

In other words, the central question of this master thesis is :

"How does the behaviour of a walking droplet (a.k.a. walker) compare to the classical and
quantum particles’ behaviours inside a Bunimovich stadium cavity?".

While this question may seem only academic, it has important consequences. Demonstrating
that the walker faithfully reproduces the electronic behaviour, for example, would provide an
easy table-top solution for exploring complex physical problems related to electron dynamics,
correlated electron behaviour, including many-body effects that are otherwise extremely difficult,
if not impossible, to reproduce through simulations.

To explore this issue, we devised an approach relying on one side on experimental observation
of walker behaviour inside a macroscopic billiard, and on the other side on quantum simulations
of electron dynamics inside a similar billiard. For the observations, an entire experimental
setup has been developed to control the forcing parameters as well as to perform the most
accurate quantitative measurements possible, given the available means (see details in Section
4). Noteworthy, the proposed setup has been created with very low budget (< 500 euros for all
components) and is made up of the following key elements :

• a fabricated bath stuck on the membrane of a simple loudspeaker, itself driven by a PC
through a NI myDAQ device.

• a single 3-axis accelerometer fixed at the center of the bath and giving the vertical
acceleration voltage measurement as analog input to the same NI myDAQ, after being
passed into an amplifier montage aiming at improving the measurement sensitivity (Figure
4.5).

• a droplet on-demand generator applying square voltage pulses on a piezoelectric buzzer to
induce a pressure variation in a fluid reservoir creating the droplet. This DOD generator is
activated by a simple Arduino Uno code when pushing a button mounted on breadboard
(Section 4.1.2).

• image post-processing tools developed on Matlab for the droplet tracking (Section 4.1.4)
as well as the surface visualization (Section 4.1.3).

2



Chapter 1. Introduction

In this master thesis, Chapter 2 introduces the main concepts related to chaotic geometries,
especially to the one of interest : the Bunimovich stadium billiard. A brief comparison between
the behaviour of the classical particle and the quantum particle is presented in Sections 2.1 and
2.2.

Chapter 3 gives a general overview of the state of the art on walking droplets. The evolution of
the mathematical modeling of this pilot-wave system is described in Section 3.1 and Section 3.2
synthesizes the experimental observations obtained with walkers.

Chapter 4 describes the experimental setup developed during the thesis and the methods used
to analyze the data with a discussion on the rationale behind the made choices made during its
conception. It is shown that the low-cost conception does not produce a pure enough uniaxial
shaking to give an accurate estimation of the memory parameter Me (introduced in Chapter 3),
so the observations are given with an estimate of the tilt angles of the bath and the measured
acceleration along the z-axis. This setup is nonetheless already suitable for capturing relevant
observations about a robust ∞-like shaped pattern.

Chapter 5 describes the strategy used to simulate the electronic transport behaviour in the
stadium cavity with a simplified square lattice and considering a tight-binding approximation.
The results obtained with two distinct Python packages, namely Kwant and Pybinding, are
presented and discussed by comparison to the related literature and more importantly to the
observations made with walking droplets in Section 4.3.

Finally, a concluding discussion comprising a synthesis on the obtained results, perspectives
for further research in this hot topic and perspectives for a setup enhancement are detailed in
Chapter 6.

3



Chapter 2

Chaotic cavities : the stadium case

In this section, we brief the concept of chaotic geometries by particularizing the discussion on
the Bunimovich stadium billiard. The main differences in behaviour between a classical particle
and a quantum particle inside the stadium billiard are highlighted.

The stadium billiard is a 2D geometry which consists in two semi-circles separated by a distance
2a (where the choice of 2a stands for the sake a writing simplicity) along their axis of orthogonal
symmetry, as shown in Figure 2.1. This seemingly simple geometry was one of the first shown
to be chaotic despite the absence of concave borders by Bunimovich [70], and is thus also called
Bunimovich stadium.

Figure 2.1: Stadium billiard geometry. We consider 2D cartesian frame (x, y) with its origin placed at the center
of the stadium.
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Chapter 2. Chaotic cavities : the stadium case 2.1. Ergodicity in the classical world

2.1 Ergodicity in the classical world
In classical physics, if ones considers the perfectly elastic bounces of a ball on the borders of
the stadium billiard, this leads to a discrete dynamical system which can be unambiguously
described by two quantities. In this case, as illustrated in Figure 2.1, we define the phase space
as : (θn, sin(in)) (2.1)
which is called the phase space representation of the system. Here, θn is the angle formed
between the impact point and the origin (0, 0) of the stadium, in is the angle between the
incidence trajectory of the ball on the border and the line normal to the stadium curvature at
the impact point and n stands for the n-th bounce of the ball on the stadium borders.

The stadium billiard is said to be ergodic because for most of the possible initial conditions
(θ0, sin(i0)), a billiard ball will, over time, uniformly explore the real space of the billiard and
almost uniformly explore the phase space ( Figure 2.3). However, it is not uniquely ergodic as
there do exist some exceptional choices of initial position and velocity for which one does not
have uniform distribution. (Figure 2.2).
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Figure 2.2: Two examples of stable orbits in the stadium billiard simulated with "classorbits.m" (see the
supplementary materials [35]). (a)-(c) Trajectories in the physical space. (b)-(d) Phase space states corresponding
to (a)-(c). More sophisticated examples are given in [33].

(a)

(c)

(b)

(d)

Figure 2.3: Growth of chaos inside the stadium billiard simulated with "classorbits.m". (a)-(c) Trajectories in
the physical space. (b)-(d) Phase space states corresponding to (a)-(c).
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Chapter 2. Chaotic cavities : the stadium case 2.1. Ergodicity in the classical world

Let us consider the discrete dynamical system :

(θn+1, sin(in+1)) = Ψ(θn, sin(in)) (2.2)
with Jacobian :

J(θn, sin(in)) (2.3)
Despite the existence of an infinite number of such orbits in the chaotic stadium geometry, it
has been proven [36] that for one special kind of cyclically ordered orbits1, they are hyperbolic
(i.e. the Jacobian matrix J(θn, sin(in)) contains one unstable eigenvalues λ1 < −1 that implies
an exponential sensitivity to even a tiny deviation from the initial conditions), and that their
stable and unstable manifolds intersect transversely in the phase space. Hence the stadium
billiard contains a Smale horseshoe in the phase space, typical for chaotic systems. [81] This
fact is thought to also hold for any type of orbit. This property justifies the appellation chaotic
for the stadium.

The Lyapunov exponent of a dynamical system is a quantity that characterizes the rate of
separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space
with initial separation vector δZ0 diverge at a rate given by :

|δZ(t)| ≈ eλt|δZ0| (2.4)

Where λ is the Lyapunov exponent.

In our case, considering a normalized height of the stadium, we have chosen the normalized
width 2a = 1 leading to the maximum Lyapunov exponent, hence the most chaotic behaviour of
the ball trajectories. [38]

1cyclically ordered orbits with exactly one point on a straight segment between each pair of points in different
half circles, said 1-CO orbit in short.

6



Chapter 2. Chaotic cavities : the stadium case 2.2. Scarring in the quantum world

2.2 Scarring in the quantum world
Compared to the classical bouncing ball case, it was observed [5, 26, 29] that the electrons
behaving in such geometry led to the apparition of scars, i.e. the concentration of the wave
function about classical periodic orbits, as depicted in Figure 2.4. This highlights a completely
different behaviour, where there is no more ergodicity in this chaotic geometry.

Figure 2.4: Simulated local density of states for electrons confined in a stadium billiard at different energies
showing scarred states. Left column, three scarred states of the stadium; right column, the isolated, unstable
periodic orbits corresponding to the scars. From [29].

Quantum and semiclassical analyses of the chaos present in the Bunimovich stadium are beyond
the scope of this master thesis. The conclusions given by G. Tanner in [69] are still reported to
avoid bad intuitive thoughts about the existence of quantum scars :
"The belief that the spectrum of the stadium billiard can be adequately described, semiclassically,
by the Gutzwiller periodic orbit trace formula2 [NB : a formula that approximates the density
of states of a quantum system in terms of classical orbits] together with a modified treatment of
the marginally stable family of bouncing-ball orbits [as in Figure 2.2] is shown to be erroneous.
Unstable periodic orbits close to the marginally stable family in phase space cannot be treated
as isolated stationary phase points when approximating the trace of the Green’s function3.
Semiclassical contributions to the trace show an ~-dependent transition from hard chaos to
integrable behaviour for trajectories approaching the bouncing-ball orbits. A whole region in
phase space surrounding the marginal stable family acts, semiclassically, like a stable island with
boundaries being explicitly ~-dependent. The localized bouncing-ball states found in the billiard
derive from this semiclassically stable island. The bouncing-ball orbits themselves, however, do
not contribute to individual eigenvalues in the spectrum."

2the quantum spectral determinant is written as D(E) = exp
∫ E

0 dE
′
TrG(E′) = Πn(E − En) where

G(q, q′
, k) = Gbb(q, q

′
, k) +Gr(q, q

′
, k) is a Green’s function divided into a bouncing-ball part and the rest. The

complete Gutzwiller trace formula is given in [7].
3a Green’s function is the impulse response of an inhomogeneous linear differential operator defined on a

domain with specified initial conditions or boundary conditions. In this case, the operator gives the spectrum
of the stadium billiard as a function of the initial and final positions in the phase space q and q

′ and the
wavenumber k.
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Chapter 3

State of the art on walkers

Faraday discovered in 1831 that, above a critical acceleration threshold γF , stationary waves can
appear on the surface of a liquid shaken with an acceleration γ = γm cos(ω0t) . This phenomenon
depicted in Figures 3.1 and 3.2 has been called the Faraday instability. The produced waves are
subharmonic, with half the frequency of the vibrational forcing ωF = ω0/2. The wavelength kF
of these waves can be deduced from the usual dispersion relation of waves at the surface of a
fluid which links the pulsation ωF to the wavevector kF . In case of gravity-capillary waves, the
dispersion relation becomes [58] :

ω2
F (kF ) =

(
ω0

2

)2
=
(
gkF + σ

ρ
k3
F

)
tanh(kFh0) (3.1)

Where g is the gravitational acceleration constant, σ, ρ, h0 are the surface tension, mass density
and height of the liquid, respectively.

Figure 3.1: Liquid movement initiation converging to
Faraday waves. Taken from [13].

Figure 3.2: Top view of the Faraday instability. Taken
from [59].

If a viscous liquid is sinusoidally vibrating along the vertical axis below the acceleration threshold
(or Faraday threshold), i.e. γm < γF , the equilibrium configuration of the liquid surface is to be
plane. If at an initial instant, the surface is disturbed, this disturbance is propagated as a wave
(see examples in Figure 3.3) that decays with a certain characteristic time τ [19]. As shown in
Figure 3.4, this time τ directly depends on the vertical acceleration of the liquid bath. For an
acceleration γm > γF above the instability threshold, a initial perturbation at the liquid surface
will be amplified until reaching a saturation amplitude which depends on γm.
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Chapter 3. State of the art on walkers

Figure 3.3: a), b) Non-vibrated bath case : a) Drop-
ping of a steel ball, b) observation of a capillary gravi-
tational wave. c), d) Case of a bath vibrated slightly
under the Faraday threshold ΓF

ΓF−Γ
= 100 : c) Drop-

ping of a steel ball, d) The capillary gravitational wave
has excited the Faraday modes : a Bessel function
centered at the impact point is observed. Adapted
from [19].

Figure 3.4: Decay time τ of an initial disturbance as
a function of the γm acceleration in the vicinity of the
Faraday threshold. The damping time of a disturbance
diverges at the Faraday instability theshold. Adapted
from [56].

In 2004, C-H Gautier, supervised by E. Fort and Y. Couder from Paris-Diderot university
discovered that it was possible for a droplet to bounce indefinitely on the surface of a liquid bath
oscillating vertically. Under certain conditions, this droplet can spontaneously move horizontally
under the influence of the wave it generated itself. These two possible modes for a droplet
have led to the names bouncing and walking droplet (or walker). Since this discovery, research
laboratories (mainly at MIT, Paris VII and ULiège) focused their efforts in the understanding
of this rich dynamical system, exhibiting many features of low-dimensional chaotic oscillators.
One key feature that raised the attention on these walkers is that they represent the first known
example of a macroscopic pilot-wave system, and exhibit behaviours thought to be exclusive
to the microscopic quantum realm such as self-organising lattice structures, single particle
diffraction, quantized orbits, orbital level splitting, tunneling effects, and wave-like statistics in
confined geometries.

As under the Faraday threshold, all the perturbations undergo an exponential decay with time
constant τ , τ is considered as representative of the memory of the system. We "adimensionalize"
it with the Faraday period to define the memory parameter :

Me = τ

TF
(3.2)

Where TF is the Faraday period. With the definition of eq. (3.2), if we consider such a
walker which bounces in phase with the Faraday period TF , the memory parameter Me can be
interpreted as the number of previous droplet bounces whose generated waves are still present
inside the current liquid surface profile when the droplet bounces again.
The Faraday instability is a Hopf bifurcation [80], whose theory shows that the distance to
Faraday threshold M evolves as :

M = γF
γF − γm

= ΓF
ΓF − Γ

(3.3)
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Chapter 3. State of the art on walkers

In 2018, Gilet and his associates [68] proved that the memory parameter is directly proportional
to this distance to Faraday threshold and can be approximated as :

Me = M
2πγ0

1 + γ
1/2
0
2 + γ0

4

 (3.4)

Where γ0 is the bath acceleration amplitude leading to k = k0 such that ΓF → 0 and ω2
F = ω2

k0 = 1
(see eq. (3.1)) in the limit of vanishing viscosity ν. [68]

In the case where the acceleration of the bath γm is weak compared to the Faraday accel-
eration, the memory time τ is weak and the standing wave attenuates quickly. Otherwise,
the standing wave survives a certain period of time, τ defining a measure of this persistence time.

(a) (b)

Figure 3.5: (a) Experimental image of a walker and its wave field withM = 55 taken from [19]. (b) Simulated
wave field taken from [34].

A prediction for an approximate value of Γ with which we need to shake the bath so as to observe
neutrally stable surface waves, ( a.k.a. the Faraday instability ΓF ) for a given wavenumber k is
given in [63] :

Γ2 = 4
g2k2

[(
2νk2 + i

ω0

2

)2
+ k

(
−g + σ

ρ
k2
)] [(

2νk2 − iω0

2

)2
+ k

(
−g + σ

ρ
k2
)]

(3.5)

Mixing eq. (3.1) with eq. (3.5) allows to determine the Faraday waves’ configuration (ωF , kF ,
ΓF ) for a given liquid with a given frequency of forcing f0.
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Chapter 3. State of the art on walkers 3.1. Modeling the walking droplet pilot-wave system

Figure 3.6: (f,Γ) curve for different viscosity values.
The walking regimes are colored in light blue. Taken
from [59].
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Figure 3.7: Obtained (k−Γ) curve applying eq. (2.32)
in [68] for the values given in Table 1. The Faraday
instability appears at the wavenumber kF for which
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This introduction served to point out the possibility for droplets to bounce indefinitely on a
sinusoidally oscillating liquid bath and the main quantities that have to be controlled in order to
choose the evolution of these droplets, namely the height of the liquid h0 and more importantly
the amplitude γm and frequency f0 of the forcing. It is the intrinsic wave-particle duality of this
interacting droplet-surface wave system that motivated the analysis of the droplets’ behaviour
in a confined chaotic geometry in order to make comparisons with existing electronic transport
experiments and simulations.

3.1 Modeling the walking droplet pilot-wave system
To derive a good mathematical model of the wave-particle dynamics of the walking droplet is
essential to compare with experimental results, understand the physical mechanisms yielding a
given observation and furthermore make predictions. In the last 15 years, different analytical
models have been proposed in the literature to describe this particular pilot-wave system,
ranging from simpler to more sophisticated ones. In this section, the evolution from simple
approximate models to more evolved complex ones is described in details, with some intermediate
model examples whose pros and cons are discussed. In these models, three interdependent
dynamics have to be taken into account, the liquid surface wave dynamics and the vertical
and horizontal droplet dynamics. As they will be regularly mixed, it is important for the
reader to identify to which of these three dynamics do the following descriptions and equations
belong.
The various deformations modes of these droplets have been carefully analyzed in [12, 88].
However, with an Ohnesorge number (adimensional number characterizing the ratio between
the viscous forces and both the inertia and surface tension) Oh ∈ [0.175− 0.3] ∼ 1, and f < fc
as shown in Table 1, the droplet will generally be considered to remain perfectly spherical in
good approximation. Exceptions to this assumption will consider up to the first two spheri-
cal harmonics. Finally, most of the described models contain lots of parameters whose values
are not necessarily given if it does not contribute to additional information in their understanding.

As a simple first model, one can mention the inelastic ball on a sinusoidally oscillating plate
given in [59, 60]. In this model, the surface of the liquid is considered as a rigid plate and
assumed to perfectly follow the actuation hence its height only varies with time. The surface
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Chapter 3. State of the art on walkers 3.1. Modeling the walking droplet pilot-wave system

height is independent from the droplet and constant everywhere :

zplate = A cos(ωt) (3.6)
Where the ball takes off when the acceleration is :

γplate(t0) = d2zplate
dt2

(t0) = −Aω2 cos(ωt0) = −g (3.7)

Between two bounds on the plate, the droplet follows a parabolic trajectory given by :

z(t) = z0 + v0(t− t0)−
1
2g(t− t0)

2 (3.8)

With : 
t0 = 1

ω
arcos( g

Aω2 )
v0 = Aω

√
1− g2

A2ω4

z0 = g
ω2

(3.9)

The height reached by the droplet corresponds to the maximum of the parabolic trajectory :

h = z0 + v2
0

2g = g

2ω2

1 +
(
γm
g

)2
 (3.10)

The vertical behaviours of bouncing droplets are shown in Figures 3.8 and 3.9. In both figures,
the upper line corresponds to the droplet’s trajectory while the lower one corresponds to the
liquid surface. From this point, it is useful to introduce the notion of bouncing mode. Let
us define the pair (m,n) where m/(f/2) represents the half period of the bouncing mode (i.e.
the number of elapsed half periods of vertical oscillations), during which the drop contacts the
surface n times.

Figure 3.8: Spatiotemporal simulation of the vertical
dynamics of a bouncer using eq. (3.8) and eq. (3.9),
taken from [59].

Figure 3.9: Three spatiotemporal images showing the
vertical behaviour of a bouncing droplet. (a) Simple
bouncing in (1, 1) mode. (b) Period doubling in (2, 2)
mode. (c) chaos in the bouncing mode. Taken from
[59].
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Figure 3.10: Bifurcation diagram of the different vertical heights reached by the droplet for various accelerations
Γ obtained by simulation. The bouncing modes (m,n) are given in red. Taken from [71].

Regarding the horizontal dynamics, the model is based on Newton’s law and takes two forces
into account :

mẍ = F b sin
(

2π ẋ

V φ
F

)
︸ ︷︷ ︸

Propulsion

− f ν ẋ︸︷︷︸
Drag

(3.11)

Where :
f ν ≈ µas

hf

τ

TF
(3.12)

is the effective damping, taking into account the viscosity of the air µa, the surface of contact
between the droplet and the bath s ∼ 1[mm2], the typical thickness of the air film hf ∼ 2[µm].
[59] And :

F b ≈ mγm
AF
λF

τ

TF
[N ] (3.13)

is a first order approximation for the effective force, proportional to the vertical acceleration γm,
the slope of the wave at the impact location AF

λF
and the duration of collision over one period τ

TF
.

By looking for steady regime (ẍ = 0) solutions of eq. (3.11) and considering a 3rd order Taylor
approximation of the first term in the right hand side, the authors obtain two stable solutions
: Vw = ±V φ

F

√
6

2π

√
(F b − F b

c )/F b. This result introduces a forcing acceleration threshold F b
c for

which the droplet leaves the bouncing mode and starts walking.

Despite the simplicity of this model, it already captures three important features : the existence
of the walking regime, a duration of contact between the droplet and the wave and the existence
of chaotic vertical dynamics as the vertical acceleration increases as depicted in Figure 3.10.
However, it has many defaults that make it wrong. It neglects the deformation of the droplet,
the energy loss due to air and due to contact with the liquid surface, the influence of the droplet
on the liquid surface hence the interactions between multiple droplets and more generally all
the fluid mechanics aspects.

In 2013, ref. [71] built model based on two masses m1 and m2 linked by a spring of stiffness k
in parallel to a dashpot with a damping coefficient c. The authors added the contribution of
energy loss during contact with the liquid surface, with σX2 being the surface energy where X
is the horizontal length increment of the droplet’s diameter at impact wrt its diameter in fly.
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In 2015, ref. [21] added the effect of the droplets on the liquid surface by proposing a linear
combination of spatio-temporally damped sine waves whose centers are the positions of the
previous impacts of all the droplets on the surface :

uin+1 − uin = −f νuin −
∂

∂s

C0ξ
ii + C1

∑
j 6=i

ξij

∣∣∣∣∣∣
n+1

(3.14)

With :

ξij(sin+1, t) = ξ0

n∑
p=−∞

cos
(

2π(sin+1(t)− sjp)
λF

)
exp

(
−
sin+1(t)− sjp

δ

)
exp

(
−
t− tjp
τ

)
(3.15)

Where uin+1 is the speed of droplet i after its (n+ 1)-th impact, and sin+1 is its position in the
1D string space, ξij is the height of the wave created by the impacts of droplet j at droplet i’s
position, δ is a viscous length, τ is the memory time, f ν is a dissipation parameter and C0, C1,
ξ0 are scaling coefficients.

For the following models, it is useful to introduce the concept of Hypothetical surface. [63]
The hypothetical surface is obtained by computing the surface evolution without applying the
pressure of the ongoing impact. This auxiliary surface will in fact have two uses. The first is to
calculate droplet penetration inside the wave field to deduce the pressure field that will affect
the droplet’s motion and the second is to obtain the gradient at the point of contact, yielding
the horizontal component of the wave force.

In reference [48], the vertical dynamics is described by an ordinary differential equation, modeling
the interaction between the droplet and fluid bath as a linear spring.
The crucial assumption underlying this model is that, each time the drop strikes the vibrating
bath, the disturbances created by its previous impacts have decayed sufficiently to be negligible.
It was assumed that any distortions and internal motions of the drop have decayed enough
s.t. we can approximate the drop at impact as being spherical and in rigid-body motion. The
condition for this assumption to be valid can be written as :

Oh >
Ω

4π (3.16)

Unfortunately, the linear spring models do not provide satisfactory quantitative agreement with
the experiments, they although allow to obtain an analytic expression for the drop motion
during both flight and contact. "It is thus only necessary to obtain numerically the points of
first impact and detachment; the motion in between can then be calculated with great speed,
which makes it possible to obtain qualitatively correct regime diagrams with great resolution".

Later in reference [48], as well as in [49, 88, 89], on the other hand, the vertical dynamics is
described by an ODE, here modeling the interaction between fluid bath and drop as a logarithmic
spring. The model has been derived assuming a small Weber number (see Table 1) We� 1,
which indicates that the inertial forces are small compared to surface tension forces, and means
that the impact dynamics is slow compared to the surface wave dynamics. It was derived
using a variational approach by assuming a quasi-static form for both the drop and interface
shapes during impact. In this model, the air drag is proved negligible in front of the others
contributions and is thus discarded [49].
The vertical dynamics equations are written in two parts :

 mz̈ = −mg∗(t) in free flight (Z ≥ 0 or FN ≤ 0)(
1 + c3

ln2| c1r0
Z |

)
mz̈ + 4

3
πµr0c2(ν)
ln| c1r0

Z |
Ż + 2πσZ

ln| c1r0
Z |

= −mg∗(t) during contact (3.17)
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where m is the droplet mass, z is its center of mass vertical position and Z = z− h is the height
of the drop above the bath surface, g∗(t) = g+γ sin(ωt) is the effective gravitational acceleration
in the vibrating bath frame of reference, FN = mz̈ + mg∗(t) is the normal component of the
reaction force acting on the drop and the three coefficients c0, c1, c2 were fixed using experimental
data.
During contact, the drop feels a reaction force dependent on Z, as well as a drag dependent on
the relative speed of the drop and bath Ż. This nonlinearity due to logarithmic correction has
the effect of reducing dissipation and prolonging contact for smaller impact speeds. There is
also a correction to the drop inertia coming from the drop’s internal fluid motion.

Next we introduce to the models based on Navier-Stokes equations. We associate a cartesian
frame (x, y, z) centered at the liquid surface at rest in the center of the bath. z = 0 thus
corresponds to the liquid surface at rest and z < 0 corresponds to the liquid contained in the
bath under the surface. The wave model in eq. (3.25), representative of the global form of the
wave contribution induced by one impact [2, 49, 63, 68], has been obtained starting from the
Navier-Stokes equations by considering silicone oil to be an incompressible fluid with velocity
~u = [ux, uy, uz]T , uniform density ρ and small waves amplitude wrt the characteristic wavelength
and boundary layer thickness.
We consider an asymptotic decay :

~u
z−>−∞−−−−−→ 0 (3.18)

Asymptotic considerations that suit the typical set up for bouncing droplet experiments lead to
the following linearized system :  ∂~u

∂t = ~g − ∆p
ρ

+ ν∆~u

∇· ~u = 0
(3.19)

with the fluid initially occupying the negative half-space, i.e. in :

D = {(x, y, z); z < 0} (3.20)
subject to the linearized kinematic boundary condition :

∂η

∂t
= uz (3.21)

and the linearized dynamic boundary conditions :

 0
0

σκη − pd

 =


ρν(∂ux

∂z + ∂uz

∂x )
ρν(∂uy

∂z + ∂uz

∂y )
−p+ 2ρν ∂uz

∂z

 (3.22)

on :
∂D =

{
(x, y, z) ∈ R3; z = 0

}
(3.23)

In particular, it is with this starting point that the dispersion relation in eq. (3.1) is derived.
To consider the two-dimensional horizontal drop motion, the total height of the standing waves
in the bath frame of reference is written as h(r, t) with r = [x, y]T . It is shown that it can be
expressed as the sum of contributions from all previous impacts:

h(r, t) =
N∑
n=1

h0(r, rn, t, tn) (3.24)

15



Chapter 3. State of the art on walkers 3.1. Modeling the walking droplet pilot-wave system

Where the contribution h0(r, rn, t, tn) resulting from a single drop impact at (r, t) = (rn, tn)
is approximated, in the long-time limit, by a standing wave decaying exponentially in time
with a spatial profile prescribed by a zero-th order Bessel function of the first kind, J0(x) (see
developments in [49]):

h0(r, rn, t, tn) ≈
√

2
π

kFR0

3k2
FR

2
0 + Bo

R0k
2
Fµ

1/2
eff

σ

cos(πft)√
t− tn

[∫
FN(t′) sin(πft′)dt′

]
x exp

([
Γ

ΓF
− 1

]
t− tn
Td

)
J0(kF |r− rn|)

(3.25)

Where the wavenumber at contact kC has directly been approximated by kF , µeff accounts for an
effective viscosity and rn and tn are taken as the weighted averages of r and t over the contact
time tC :

rn =
∫
tC
FN(t′)r(t′)dt′∫
tC
FN(t′)dt′ , tn =

∫
tC
FN(t′)t′dt′∫

tC
FN(t′)dt′ (3.26)

The liquid surface height from eq. (3.25) is depicted in Figure 3.11.

Figure 3.11: Full (dashed line) and long-term approximation (solid line) numerical models predictions of the
dimensionless height of the surface h(0,τ)

R0
as a function of time non-dimensionalized by TF for (a) 20 [cSt] oil at

80 [Hz] and (b) 50 [cSt] oil at 50 [Hz]. The surface is forced at t = TF /4 and then evolves freely. Taken from [49].

Note that treating fluid as being of infinite depth is a valid approximation for depths greater
than half a wavelength, as is typically the case in the experiments of interest. [2]

In 2018, reference [68] showed that the single impact of a small droplet leads to a wave dynamics
solution of the form :

h(r, t) ≈ B+
F (ti)kF

√
π

D(t− ti)
cos(t+ θ+

F )J0(kF r) exp
[
− t− ti

2πMe
− r2

4D(t− ti)

]
(3.27)

Where ti is the impact time instant, J0( · ) is the zero-th order Bessel function of the first kind,
r = |r| being the distance to the impact with r = [x− xi, y − yi]T and we assume t− ti > 0 and
kF r � 1 or kF r � 1.
The main additions highlighted by ref. [68] wrt eq. (3.25) are (i) the phase shift θ+

F between
the impact and the resulting wave, (ii) a diffusive spreading in the exponential decay (diffusion
coefficient D) and (iii) a well-defined amplitude B+

F that depends on the impact phase τi in eq.
(2.50) of the same paper.

The extension of this solution to derive the surface waves emitted by a walker assuming the
walker lies in the (m,n) = (1, 1) mode and moves in a straight line at constant speed Vw is also
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described in ref. [68] and yields the results depicted in Figure 3.12. In the limit of small walking
speed and low memory (2πMekFv � 1), the following analytical solution can be obtained :

hw(r, t) = B+
F kF√

v2 + 2D
πMe

cos(t+ θ+
F )J0

kF
∣∣∣∣∣∣r + r√

v2 + 2D
πMe

v

∣∣∣∣∣∣
 exp [−r/l(θ)] (3.28)

Where the term inside the Bessel function J0( · ) takes into account a Doppler effect in the
walking regime, which grows with higher speeds v. This Doppler effect implies that the wave-
length will appear slightly smaller than λF ahead of the droplet and slightly larger behind it, as
shown in Figure 3.18.

Figure 3.12: Radial gradient of surface waves, (a) versus time at a fixed distance r = 1.32 [cm] from the impact,
and (b) versus position at a fixed time, t = 0.233 [s] after impact. The present model (red curve) predicts a phase
shift of +π/4 between the Faraday waves and the forcing signal, which is in better agreement with experiments
than previous models (grey curve). Results obtained in [68].

With a reasoning similar to the one given for the first model presented in this section, ref. [49]
was able to obtain an approximation to the walking memory threshold Mec :

Mec =
5
√

2π sin(Φi)(kFR0)5

6(3k2
FR

2
0 + Bo)

√
µeffg2T 3

F

σR0

−2/3

(3.29)

where a (m,n) = (2, 1)2 bouncing mode is considered and a constant horizontal speed. Φi is the
phase of impact. A normalized acceleration threshold ΓW can then be obtained from eq. (3.29)
and eq. (3.4).

Finally, assuming the droplet to be in resonance with the bath, i.e. it is bouncing periodically in
the vertical direction with period T = 4π

ω
(i.e. bouncing period is double of the forcing period).

the horizontal dynamics equation is :

mẍ +D(t)ẋ = −∇h(x, t)FN(t) (3.30)

Where D(t) = C
√
ρR0/σFN(t) + 6πR0µa is the total instantaneous drag coefficient and C is

the proportionality constant for the tangential drag force. The first term of D(t) represents the
momentum drag induced during impact and the second term represents the aerodynamic drag
due to air friction induced during flight. The overlining on the right hand side means that we
take the time average of the term over one period T .
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In 2017, reference [15] added the possibility to handle an external potential field V(x(t), t) in
the droplet’s horizontal dynamics (e.g. a harmonic potential, but still considering an infinitely
large space in the horizontal plane thus no reflections of the waves). The droplet dynamics
writes here as :

mẍ(t) +D(t)ẋ(t) = −∇V(x(t), t)−∇h(x, t)FN(t)
mz̈(t) + cStż(t) = −mgΓ(t) + FN(t) (3.31)

Where the air friction was also considered for the vertical dynamics with cStż(t).
Taking V = 1

2κ|x(t)|2 (resp. 0) for dynamics in a harmonic potential well (resp. free walking
dynamics), the authors obtain the following dimensionless system :

0 = Lkam(t; k), ∀t 6= tn
0 = Lkbm(t; k), ∀t 6= tn
0 = X”(t) + ν̃pX

′(t) + κ̃X(t), ∀t 6= tn[
a
′(t−;k)
m

]+
−

= −Pm(k)Φm(X(tn); k)[
b
′(t−;k)
m

]+
−

= −Pm(k)Ψm(X(tn); k)[
X′(tn)

]+
−

= −F (c)
(

1
c

√
B
R
∇η(X(tn), tn) + X′(t−n )

)
(3.32)

Discretizing the harmonic potential well problem yields the following algorithm for the horizontal
dynamics numerical simulation:

Algorithm 1

1. Use Xn and X′n to compute Xn+1 and X̃′ = X′(t′n+1) :[
Xn+1
X̃′

]
= F(κ̃)

[
Xn

X′n

]
(3.33)

2. Update wave amplitudes including jump conditions ∀k > 0 (similarly for bn(k)):[
an+1(k)
a′n+1(k)

]
= Mk(Γ)

[
an+1(k)
a′n+1(k)

]
−
[

0
P(k)Φ(Xn+1; k)

]
(3.34)

3. Apply droplet jump conditions:

X′n+1 = (1− F (c))X̃′ − F (c)
c

√
B

R
∇η(Xn+1, tn+1) (3.35)

Reference [39] proposed a model allowing simulations of walkers in a variable topography, i.e.
with the liquid depth varying in space. The authors managed to simulate the reflection of a
walking droplet arriving at a deep-shallow water interface, as shown in Figure 3.13.
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Figure 3.13: Wave amplitude (contour plot) and trajectories (white line) for wall reflection. The red line
represents the corresponding experimental data. (a) Γ/ΓF = 0.90, (b) Γ/ΓF = 0.99. From [39].

An overview of the current state of the art regarding the mathematical modelling of the walking
droplet pilot-wave system dynamics was given. Despite numerous improvements in the models
reliability, obtaining and explanation of some experimentally observed phenomena such as the
bouncing and walking regime, Doppler effect, orbital and promenade pairs, double quantization
for a droplet in a harmonic potential, the current models are restricted to the (2,1) bouncing
mode with prescribed impact phase, it still remains to develop models that can handle different
bouncing modes. Reference [39] investigated what happens with a variable topography, never-
theless with significant additional computational cost due to a non constant liquid depth. As
the objective was to obtain a general and complete model of the system, the numerous simplified
models that were proposed to explain some specific behaviours of walkers were not described in
this section.

Except for an analytical solution based on Green functions proposed in ref. [14] for the single
slit experiment, none of the current models are able to handle eventual reflections of the waves
in case of a small size bath, which the situation of interest in this work. This means that no
numerical simulation of the droplets dynamics was possible to confront to the experimental
results presented in Section 4.3. This gives room for further research in the study of the wave
reflection on a bath border and further development of such a mathematical model.

To conclude, it is important to point out the possibility to combine the dynamics equations
coming from different models. For example, a very complete model of this pilot-wave system
may use eq. (3.17) for the vertical dynamics, eq. (3.31) for the horizontal dynamics and eq.
(3.27) for the wave dynamics. This choice may rely on specific criteria such as the accuracy or
the computational cost.
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3.2 Review of droplet experiments
The objective of this section is to present a short review of all the phenomena that have been
observed experimentally with walking droplets. Some illustrative movies can be found online
(e.g. [25, 77]).

3.2.1 Bouncing and walking regimes
Here we synthesize the numerous experiments that have been conducted on the dynamics of
bouncing and walking droplets. Intensive research has been conducted on the characterization
of the different bouncing modes as a function of the forcing parameters [48, 49, 59, 89] and the
walking speeds in the walking regime [49, 59].

In 2011, reference [19] investigated the nature of a walker’s wave field. The authors showed that
each shock emits a radial travelling wave, leaving behind a localized mode of slowly decaying
Faraday standing waves. For rectilinear trajectories, the linear superposition of the waves
generated results in a Fresnel interference pattern of the global wave field.

Figure 3.14: Spatio-temporal 3D reconstruction of the
wave propagation away from the point of impact of a
steel ball on the bath (at time t = 0) with Γ−1 = 32.
Taken from [19].

Figure 3.15: The temporal evolution of the liquid
height at a point located 5.3 [mm] away from the ball
impact. The measured non-dimensional damping time
τ/TF = 6.25 is the real value of the memory parameter.
It is close to the expected value Γ−1 = 5. Taken from
[19].

In addition to the observations made on the wave emitted by the bouncing and walking droplets,
it has been observed that the bouncing mode of these latter could be very exotic. The examples
of three different bouncing modes are given in Figure 3.16.

Figure 3.16: Spatiotemporal diagrams of the bouncing modes observed for the 20[cSt]− 80[Hz] combination. (a)
Bouncing mode (4,4), Γ = 2.3, Ω = 0.45. (b) Bouncing mode (4,3), Γ = 2.7, Ω = 0.45. (c) Bouncing mode (4,2),
Γ = 3.5, Ω = 0.42. From [89].
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Where the bouncing mode is also correlated to the contact time tc of the droplet in the liquid
bath, which has been measured for various droplet radii R0, acceleration peaks Γ and Webber
numbers We in refs. [48] and [49].

The dependency of the bouncing mode on the system parameters has also been examined to
allow for a more deterministic control of the experiments conducted on walkers. In most cases,
this dependency is presented in a phase diagram where the two parameters are the vibration
number Ω and the non-dimensional acceleration peak Γ, as depicted in Figure 3.17.

Figure 3.17: Bouncing modes diagram for f = 80 [Hz] and ν = 20 [cSt] taken from [89]. Also obtained in [49].

The walking regime is surrounded in red in Figure 3.17. This highlights the existence of a
bifurcation where the droplet jumps from a simple bouncing regime to a walking regime where
it moves horizontally at the surface of the bath. The walking regime is not straightforward to
obtain and it has been shown that choosing f = 80[Hz], ν = 20[cSt] was optimal for reaching
it (see Figure 3.6). [59] The droplet’s walking speed VW and impact phase φ have also been
measured vs the distance to Faraday thresholdM and for some droplet radii [2, 59].

In the walking regime, as the
droplet plays the role of a mov-
ing wave source, a Doppler effect
has been observed experimentally
[19, 63]. From Figure 3.18, it
can be seen that the wavelengths
ahead and beyond of the walker
deviate from the Faraday wave-
length λF with a deviation lin-
early dependant on the walker’s
speed.

Figure 3.18: Doppler effect measured in [19].
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It has to be noted that ref. [51] recently discovered a new class of walking droplets called
superwalkers by the authors. These superwalkers appear in the presence of two driving frequencies
and can be more than double the size of the largest walkers. They can also travel at more than
triple the speed of the fastest walkers. With these superwalkers, the authors could observe some
interesting behaviour. Among them can be cited droplets orbits with intermittent reversals of
the orbiting direction as well as stop and go motions.

3.2.2 Interaction with interfaces
From here, the described experiments will be on the non-classical behaviour of walking droplets
in their horizontal dynamics. The following observations are the reasons that raised the interest
for making analogies between the walking droplet system and the quantum world.

Due to the intrinsic wave-particle duality of walkers, the presence of interfaces, i.e. walls
(borders of the bath) or barriers (liquid depth variation) has a strong influence on the way they
behave. Indeed, changing the local depth of the bath hence changes the dispersion relation
for the Faraday waves. For a sufficiently small depth these waves are so strongly damped
that this effectively leads to a region into which the walking droplets generally cannot go even
though surface waves may slightly penetrate this region. One of the first experiments that were
conducted on the interaction with an interface was to observe the diffraction of a walker through
a single slit. [22]

Diffraction Reference [22] presented the first experimental measurements conducted on sin-
gle and double slit diffraction. The authors claimed the proximity between the interference
pattern obtained behind the slits and the quantum equivalent with electrons. These results
were contested [6], especially due to the symmetrization of the presented histogram plots and
the lack of reproductibility of the results due to poor exploration of the parameters space.

The experimental setup for the measurement is shown in Figure 3.19. Reference [62] recently
revisited the discussions given in [6] and [22] to claim the following. "Unlike the diffraction
patterns arising in optics and quantum mechanics, the number of peaks in the walking droplet
system is not expected to depend on the relative magnitudes of the wavelength and the slit
width. The droplet trajectories in the single- and double-slit geometries with the same initial
conditions can be markedly different (Figure 3.20), showing that it is influenced by both slits.
As pointed out by ref. [6], this influence does not necessarily mean that the wave passes through
both slits and then affects the drop motion. Rather, it results from the spatial extent of the
pilot-wave field, which allows the walker to be influenced by both slits".

As shown in Figure 3.21, the deflection angle α behind the slit(s) is strongly dependent on the
forcing parameters. In the low-memory regime, the relationship between the impact parameter
yi and the deflection angle is deterministic and there is thus no uncertainty. However, this
determinism disappears for sufficiently high memory regimes (namely Me ' 0.99).

Reference [14] proposed an analytical model based on Green functions to take the presence of
boundaries into account. Their model suggests three preferred deflections angles behind the slit,
as observed in [62].
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Figure 3.19: Experimental set-ups for single- and double-slit geometries. (a) (c) Side view of the submerged slit
geometries. (b) (d) Plan view. From [62].

Figure 3.20: Comparison between observed (a) single-
slit and (b) double-slit trajectories, with forcing
Γ/ΓF = 0.998 ± 0.002 and free walking speed u0 =
6.8± 0.2 [mm/s]. The marked difference between the
two indicates the influence of the second slit. From
[62].

Figure 3.21: Trajectories of a walking droplet passing
through the slit with fixed impact parameter yi =
+0.17L, and with respective forcing and free speed:
(γ/γF , u0[mm/s]) = (a) (0.985, 6.4), (b) (0.990,6.6),
(c) (0.995,6.8) and (d) (0.998,6.9). (e) Dependence of
the deflection angle α on the forcing γ/γF for yi =
+0.17L. From [62].

Reflections on barriers Reference [61] realized exhaustive measurements of the reflection
of a walker on a barrier with shallow liquid height. This work highlighted the non-specular
character of the reflections, i.e. the reflection angle θr is in general different from the incidence
angle θi. For a fixed memory parameter, we observe that a wide range of θi converges to a
narrow band of θr in the vicinity of 70°. For a fixed incidence angle, the memory parameter
variation induces some variations of the reflection angle. Finally, for very high memory regimes,
the droplet can eventually execute a loop due to a transient self-confinement in its own wave,
and thus be reflected almost towards its incidence direction, as depicted in Figure 3.22 (b).
On the other hand, reference [76] studied the dependency of a droplet reflection in a periodic
potential well created by the jumping between two different liquid heights as a square signal
along the space. The authors observed that the probability of reflection was directly associated
to the ratio between the well spatial period p and the Faraday wavelength λF .
The interacting with a submerged pillar was also studied in [42].
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Figure 3.22: Dependence on the memory γ/γF of the reflection of a walker for a fixed initial angle of incident
θi = 34.9± 0.6°. Comparison of experimental (solid line) and theoretical (dashed line) trajectories at (a) two low
memories and (b) one very high memory (c) Local measurement of the angle of incident thetai and the reflected
angle θr as a function of the distance x from the barrier at different memories. From [61].

Tunnel effect In 2009, ref. [18] recorded evidence for a tunneling effect, where the reflection
or transmission of a given incident walker on a submerged barrier is unpredictable. However, the
crossing probability decreases exponentially with increasing barrier width. This shows that this
wave-particle association has a nonlocality sufficient to generate a quantumlike tunneling at a
macroscopic scale. Reference [28] revisited this experiment both theoretically and experimentally.
Based on a simple model taking into account both a self-propulsion implemented by means
of Rayleigh-type friction force and a repulsion force due to the increasing potential of the
submerged barrier, they prove the existence of two stable solutions for the walker’s speed after
the contact with the barrier, it can either be reflected or transmitted. They show that the
non-Hamiltonian self-propulsion properties of walkers are sufficient to rationalize their crossing
of submarine barriers of potential. However, they introduce the randomness of initial conditions,
namely the angle of incidence, as an ad hoc ingredient.

Waveguide analogy The confinement of a walker in different rectangular cavities, used as
waveguides for the Faraday waves emitted by successive droplet bounces was investigated in
[27].
For well widths smaller than the Faraday wave-
length D < λF , the droplet can only bounce
and thus never walks. It is observed that a one-
dimensional confinement is optimal for narrow
channels of width of D = 1.5λF . It is shown,
due to an energetic study, that the optimal
width maximizing the longitudinal speed vy
is around 2λF such that applications can be
designed. The longitudinal walking speed is
found to be:

vy = ±v(0)
y

√√√√1−
(
λF
D

)2

(3.36)

In addition, upon shedding light on the ques-
tion of how straight the walker’s motion can be
in a 1D channel, this study complements the
works based on walkers in confined geometries.

Figure 3.23: Typical trajectories of a walker in four
channels (a) D/λF ' 1.5, (b) D/λF ' 2, (c) D/λF '
4 and (d) D/λF ' 5.5. From [27].
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3.2.3 Evolution in a varying potential or a confined geometry
In the case of experiments conducted on walkers, what is called potential is related to the ability
for an amnesic (i.e. low memory) walker to go in a given region of the system, analogous to
the energy level potential of quantum systems. Three techniques have been used to control
the potential inside a walking droplet system : (i) Vary the liquid height [18, 76] (ii) Rotate
the whole system to induce a fictive centripetal force and then obtain a harmonic potential
[44, 56, 74, 75] (iii) Magnetize the droplet by using ferrofluid and impose a magnetic field
transverse to the 2D system. [56, 73]
The interesting features of these techniques is that it allows to confine the walker in a given
spatial region of the system, thus leading to an effective confined geometry. [23, 24, 73] Hence,
the experiments realized on walkers with confined geometries or confining potentials led to very
similar observations. Under this condition, there will be a mixing between confined geometry
and confining potential in the following presented results, which intuitively could be obtained in
both cases.

When a walker evolves in a system whose dimensions are comparable to a couple Faraday
wavelengths (named here a confined geometry or cavity) and if the memory Me is high enough,
the interaction of the created waves with the borders of the system will amplify the eigenmodes
of this cavity and several new behaviours appear. Before describing these latter, let us inspire
from ref. [56] to define some quantities (or observables) :

R =

√√√√ 1
N

N∑
k=0

r2
k(t)
λ2
F

(3.37)

is a normalized mean spatial extension, where {rk} denotes the ensemble of droplet’s horizontal
positions wrt the cavity/potential center and N is the number of recorded positions. The
advantage of choosing a quadratic mean is that it allows to associate a mean potential energy
Ep to the droplet’s move as :

Ep = R
2

Λ2 = 1
N

N∑
k=0

ω2
rrk(t)2

V 2 (3.38)

The second observable is a normalized angular momentum L defined as :

L = 1
N

N∑
k=0

~rk
λF
× ~Vk
V0

(3.39)

Where V0 is the droplet velocity in the free walking case (assuming an infinitely large sys-
tem), ~Vk is the droplet velocity vector at a given time instant k and Λ = V/(λFωr) is the
non-dimensionalized size of the confinement, where ωr ' 1.2ω corresponds to the characteristic
pulsation of the confined walker.

Harmonic potential [34, 56] studied the confinement of a walker inside a harmonic potential
created with an externally applied magnetic field. In the low-memory regime, the walker is
said to be amnesic and inevitably converges to a circular orbit where the radius of this orbit is
directly related to the harmonic potential width. The stability of the orbits has been analyzed
in [34, 73].
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When increasing the memory Me such that
some wave perturbations due to previous
bounces of the droplet are still present af-
ter one traveled orbital revolution, the walker
starts doing messy loop trajectories that at
first glance look random. However, when look-
ing closer at the long-term statistics of these
trajectories, one can observe the emergence
of new stable trajectories (Figure 3.24). They
form a set of geometrical curves called Cassini-
ans, which all obey to the following equation
in polar coordinates (r, θ) :

r2k = −2ekrk cos(kθ) + e2k − r2k
0 = 0 (3.40)

Where the integer k corresponds to the
Cassinian order, r0 its size and e its excen-
tricity, i.e. the relative distance between the
fixed points wrt the extension r0.

Figure 3.24: 4 examples of cassinian trajectories. (a)
circular orbit (Me = 100,Λ = 0.42), (b) oval (Me =
60,Λ = 0.8), (c) lemniscate (Me = 50,Λ = 0.7), (d)
trifolium (Me = 60,Λ = 1.2). From [56].

Moreover, the results shown in Figures 3.25 and 3.26 give experimental evidence of a double
quantification (both for R and Lz) as the memory increases.

Figure 3.25: Circular orbits quantification as Me in-
creases. Taken from [56].

Figure 3.26: Double quantification of the stable orbits.
Evolution of the mean spatial extent R as a function
of the average kinetic momentum. Taken from [56].

It is observed that the trajectories at high memory Me correspond to chaotic regimes charac-
terized by intermittent transitions between a discrete set of states. [56, 57] At any given time,
the system is in one of these states characterized by a double quantization of size and angular
momentum. A low dimensional intermittency determines their respective probabilities. They
thus form an eigenstate basis of decomposition for what would be observed as a superposition
of states if all measurements were intrusive.

References [44, 74, 75, 88] investigated the case of a harmonic potential induced by the rotation
of the vibrated bath around the vertical axis. One observes in Figure 3.27 the quantification
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of the orbital radius r0 as the memory parameter increases. Moreover, the tendency of r0 to
diminish as Ω increases is reminiscent of the narrowing of the harmonic potential induced by
the coriolis effect.

Figure 3.27: Observed dependence of the orbital radius r0 on the rotation rate of the bath Ω: γ/γF = (0.822,
0.922, 0.954, 0.971) for (a), (b), (c), (d), respectively. Taken from [44].

The emergence of those quantized orbits can be explained by the orbital stability diagram
derived in [74] shown in Figure 3.28. This diagram has been extended to predict the resulting
walker’s exotic trajectories numerically explored and described in [75] and is shown in Figure 3.29.

Figure 3.28: Orbital stability diagram for a walker of
radius R0 = 0.4 [mm], phase sinΦ = 0.16, viscosity
ν = 20.9 [cSt] and forcing frequency f0 = 80 [Hz]. The
blue region denotes the stable regions while the green
and red ones stand for unstable regions. Taken from
[74]. Also obtained in [34].

Figure 3.29: Regime diagram delineating the depen-
dence of the walker’s trajectory on the initial orbital
radius r0 and vibrational forcing γ. Taken from [75].

As the forcing acceleration is progressively increased, stable circular orbits give way to wobbling
orbits, well depicted in Figure 3.29 and Fig. 2 of [75], which are succeeded in turn by instabilities
of the orbital center characterized by steady drifting then discrete leaping.
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Corrals As intuitively predicted in the beginning of this section and shown in [11, 41], a
walking droplet confined in a circular cavity exhibits the same behaviours as when a harmonic
potential is imposed. Indeed, we recover cassinian curved trajectories and the double quantifica-
tion of the radial distance R and the angular momentum L.
In Figure 3.31, dark circular strips indicate more frequent impacts at certain radial positions.
The corresponding probability distribution function ρ(r) shows a series of extrema at specific
radii. The radial position oscillates intermittently between these preferred radii.
Some tools for a fair comparison between a walker and a quantum particle are given in [24]. It
is shown that the chaotic trajectories of confined walkers are ballistic on the short term and
diffusive on the long term. "The coherence distance, beyond which the ballistic behavior is lost,
corresponds to half the Faraday wavelength. The Faraday wavelength is at the heart of most
quantumlike behaviors of walkers; it is identified as equivalent to the de Broglie wavelength
for a quantum particle. Our analysis of the diffusive motion in a circular corral has suggested
another equivalence, between the diffusion coefficient D and the factor ~/m in the Schrödinger
equation. The walker behavior thus becomes apparently random only when it is analyzed at a
length scale larger than λF/2. This analogy is confirmed by the observed ballistic speed of the
walker, which corresponds closely to the de Broglie speed ~k/m. Similarly, the average kinetic
energy of the walker matches Schrodinger’s prediction over several orders of magnitude."

Figure 3.30: Pictures of the circular corral used in
[24].

Figure 3.31: Two-dimensional probability distribution
function obtained by superimposing half a million im-
pact positions issued from 78 independent trajectories.
From [24].

The case of the circular corral was extended to an elliptical corral in [10]. They showed that
placing a circular well at one of the foci of the ellipse, a mode with maxima near the foci is
preferentially excited, leading to a projection effect in the walker’s position histogram towards the
empty focus, an effect strongly reminiscent of the quantum mirage. [47] They have demonstrated
that a localized irregularity in the medium can drastically change the relative weight of the
resonant modes and thus the statistical response of the confined droplet. As in the quantum
corral experiments, they have shown that the position of the irregularity plays a critical role in
the resulting statistical behaviour.
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3.2.4 Interactions between multiple droplets
If several droplets evolve in the same environment and sufficiently close to each other, they
become coupled by the intermediary of the wave which they created and which guides them.
This coupling can take different forms, and if often dependent on the relative phase between them.

Lattices

Bouncing droplets on a vibrated liquid bath that interact through the surface waves they emitted
can form various types of stable crystalline clusters. Examples of such clusters are shown in
Figure 3.32. Such clusters have been studied in [16, 17, 59]. When increasing the forcing
acceleration over an onset value, the aggregates present a global and spontaneous vibration
mode where all droplets vibrate around their equilibrium positions. These oscillatory modes
are similar to the phonons of a solid crystal. Finally, when the period doubling is complete,
the droplets become walkers. The crystal is usually destroyed but small crystallites sometimes
undergo a transition to global rotation.

Figure 3.32: The observed 2D periodic organizations of droplets
of two different phases and their interpretation. A sketch of
the relation between the two sub lattices is given below each
photograph. (b) Two identical square sub-lattices (44). Each
square is stabilized by a central drop of the other phase. (d) A
snub square (32, 4, 3, 4) associated to a square sublattice. (e) An
elongated triangular lattice (33, 42) associated to a monoclinic
sublattice. Taken from [17].

Figure 3.33: Trajectories along a line of 11
droplets in hexagonal symmetry illustrating
their vibration mode similar to phonons in
solid-state crystals. Each droplet is moving
in phase opposition with its neighbours.
From [16].

Collisions and promenades

If two walkers with identical sizes are projected in parallel towards each other, we talk about a
collision. The distance between the two parallel lines formed by the initial trajectories of both
droplet is called the impact parameter and writes yi. Depending on yi, there are two possible
issues (1) the meeting results in a constructive collision where the walkers are attracted and either
start orbiting around each other or start walking in the same direction with their interdistance
oscillating along the path. This second case is called a promenade. (2) the meeting results in a
destructive collision where they are repulsed and follow their newly deviated trajectories.
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Figure 3.34: (a) Repulsive collision. (b) Attractive collision leading to an orbiting pair. From [59]. (c)
Superposition of 6 experiments with approximately the same initial conditions and markedly different outcomes:
scattering (red and yellow), orbiting (light and dark green), and promenades (light and dark blue) from [67].

Moreover, it has been observed that the
distance dorbn between two droplets orbiting
around each other takes discrete values :

dorbn = (n− ε0)λF (3.41)
Where n is (half) an integer if the droplets
bounce in (opposition of) phase and ε0 ≈ 0.2 is
a constant shift hiding more complex interac-
tions (partly interpreted in references [59, 60]).

Figure 3.35: Measured diameter of the orbit of two
walkers as a function of their order n. Taken from [59].

A theoretical and numerical investigation made in [50] revealed the existence of more exotic
behaviors for two identical in-phase bouncing droplets, synthetized in their Fig. 1.

Other phenomena can appear if droplets of different sizes interact. Among them, we can mention
the epycicles and the orbiting promenades studied in [59].

Trains of droplets were experimentally studied in [21] in an annular cavity forming an equivalent
infinite 1D system. It was shown that the walkers there spontaneously synchronize to share
a common coherent wave propelling the group at a speed faster than single walkers. This
group speed in monotonically increasing with the number of droplets yet saturating around
vN = 1.22v1 where vN is the group speed and v1 is the speed of one only walker. For a pair of
walkers, the pair speed increases as their interdistance, which can take only specific values as
written in eq. (3.41), diminishes.
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Chapter 4

Walking droplet experiment

The complete description and validation of the experimental setup is given in this section.
Additionally, the obtained observations are reported and discussed based on the state of the art
and the quality of the setup.

4.1 Experimental setup
This section aims at describing the low-cost self-developed setup and justifying the choices made
in its conception. The different software programs as well as 3D drawings made with Solidworks
are available in open-source in the Supplementary materials [35].

A schematic of the experimental setup in shown in Figure 4.1. A stadium-shaped bath made
out of plexiglas has been fabricated and fixed on the membrane of a loudspeaker. The bath
is attached to the membrane of a loudspeaker playing the role of an electromagnetic shaker
which oscillates vertically with acceleration γ(t) = γm cos(ω0t) where γm and f0 = ω

2π = 80 [Hz]
are the prescribed maximum acceleration and frequency, respectively. The stadium of width
W = 38 [mm] and length L = 2W = 76 [mm] has been designed such that W ≈ 8λF with the
parameters in Table 1. It is filled of silicone oil to a height h0 ∈ [6− 11] [mm] (depending on
the used stadium bath) such that a thin liquid film of depth h1 < 1 [mm] overlays its border,
serving as a wave damper. The real setup is shown in Figure 4.2.

The used silicone oil comes from Sigma-Aldrich [65], with its physical properties given in Table 1.
The viscosity ν = 20 [cSt] at T = 25[°C] has been shown to be ideal for observing walkers with
a frequency of forcing f0 = 80 [Hz] (see Figure 3.6). Moreover, this viscosity is high enough to
obtain an Ohnesorge number lying in the Oh ∈ [0.175, 0.3] interval depending on the droplet’s
radius, this means that the magnitude (∼ 1) of Oh is sufficient to neglect the deformation
modes of the droplet in good approximation. Following eq. (3.1), the liquid can be considered
to have an infinite depth if the liquid height h0 fulfils the condition :

tanh(kFh0) ≈ 1 ⇐⇒ kFh0 > 4 (4.1)
With kF = 1330 [rad/m], eq. (4.1) yields the condition h0 > 3 [mm] which will always be
satisfied in the following experiments.

Images of the pilot-wave system are recorded with a Panasonic DMC-FZ45 camera. The camera
has a framerate of 25 FPS and a resolution of 1080x720 pixels and is placed above the bath at a
height H = 62 [cm] to justify the paraxial approximation useful in Section 4.1.3. This camera
aims to analyze both the horizontal droplet dynamics and the wave dynamics. The camera has
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no trigger thus the beginning of a recording is launched manually and there is no deterministic
relationship between the taken images and the droplet’s vertical state. With the current setup,
there is no way to properly analyze the vertical dynamics. The images are post-processed with
Matlab routines running on PC and described in Sections 4.1.3 and 4.1.4. A desk lamp without
occlusion is placed close to the camera and at the same height to avoid heating the liquid whose
properties vary with temperature.

The vertical forcing of the bath as well as the acceleration measurement are fully described in
Section 4.1.1. Regarding the droplet on demand generator (DOD) described in Section 4.1.2,
the fluid reservoir at the rear (see Figure 4.9) is voluntarily hidden for a sake of simplicity in
the schematic.

Figure 4.1: Schematic of the experimental setup.
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(a) (b)

Figure 4.2: Real experimental setup. The background in painted in white for a better focus on the foreground.
The accelerometer present in Figure 4.1 is hidden here. The vibrating bath is placed on a chair such that it does
not vibrate all the other components attached to the table. A non treated glass screen is placed on top of the
bath to protect it from parasitic air flow. (a) sideview (b) top view.

4.1.1 Vertical oscillations
The vertical forcing of the bath is ensured by a NI Labview program ("MyDAQ_memory_control.vi"
in the Supplementary materials [35]) that communicates with a NI myDAQ. The NI myDAQ
has two analog inputs (AI) and two analog outputs (AO). The electrical connections are shown
in Figure A.1. The NI myDAQ is able to actuate the loudspeaker through the use of a power
amplifier, here a Brüel Kjaer type 2706. The power amplifier is not shown in Figure A.1 for
clarity.

The loudspeaker has carefully been positioned flat by using a bubble level as verification tool.
It is placed on a heavier asynchronous motor and united with it thanks to magnetization, the
whole is then placed on top of an anti-vibration foam. These actions aim to reduce the external
vibrations. Nothing has been used to stabilize the bath in the transverse directions.

The acceleration measurement is performed using a 3-axis ± 16 [g] ADXL326 accelerometer
[3], which is supplied with 5 [V] coming from the Arduino Uno and outputs a voltage in the
range [0,3.3] [V] for each axis depending on the sensed acceleration in that direction. As there
are only 2 AI with the myDAQ, the X and Y accelerations are measured with the AI of the
Arduino Uno.

The developped Labview program, namely "MyDAQ_memory_control.vi" allows the user to vary
the frequency f0, the amplitude A (hence also peak acceleration γ = (2πf0)2A) and sample rate
N of the forcing with the myDAQ. At the observation side, the front panel shows in real-time
the acceleration amplitude Γm, two waveforms one for Γ versus time and one for its FFT in
logarithmic scale, and based on a Faraday threshold input, an estimation of the current memory
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value Me. The user interface is shown in Figure A.2. The proposed utilization consists in
applying a voltage amplitude for the sinusoidal forcing, rising this amplitude until observing the
Faraday instability, writing the measured acceleration amplitude in the corresponding control
box, and then varying the input voltage by trials and errors to reach the desired memory
parameter. Due to an unresolved enormous delay between the acceleration measurement and
forcing (around 4 seconds), the initially intended PI controller was not used for an automatic
convergence to the set point.

Signal conditioning chain and calibration

A functional block diagram of the capacitance-to-voltage conversion is shown in Fig.1 of [3].
The frequency of forcing f0 = 80 [Hz] is well within the 3 axis bandwidth (min. 550 [Hz] for
Z-axis). As the acceleration measurement is performed both with a Arduino Uno and a NI
myDAQ, two calibration phases will be necessary. The Arduino Uno uses a 10-bit ADC in order
to output the acceleration measurement while the myDAQ keeps an analog value which will be
digitized by the computer. In both cases, we aim to find the slope A and offset B of the linear
relationship between the device measurement and the corresponding normalized acceleration
value Γ based on a finite set of pairs (xi,Γi). As described in ref. [84], in this SISO case, the
coefficients of the linear regression are : A =

∑N

i=1(xi−x)(Γi−Γ)∑N

i=1(xi−x)2

B = Γ− Ax
(4.2)

Where x and Γ denote the averages over all the xi’s and Γ’s, respectively. The calibration
values are given in Table 4.1. They yield (A,B) = (52.63,−27262) for the Arduino Uno and
(16047,−27007) for the myDAQ, respectively.

Device Measurement output type Range −1 [g] 0 [g] 1 [g] [Unit]
Arduino Uno decimal value i [0-1023] 499 518 537 [-]
NI myDAQ voltage VDAQ [0-3.3] 1.622 1.682 1.745 [V ]

Table 4.1: Measurement output types and calibration values.

No supplementary material was accessible to give calibration points beyond 1000[mg] in absolute
value but the referenced nonlinearity of ±0.3% [3] enforces the confidence in this extrapolation.
The maximum relative error wrt the linear regression of 6[%] in Figure 4.6 gives an upper bound
on the absolute error of about ±260[mg] for the maximal acceleration ΓF .
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Figure 4.3: Calibration of the Arduino Uno measure-
ment. The inset is a zoom on the calibration points
to highlight their proximity to the linear regression.
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Figure 4.4: Calibration of the myDAQ measurement.
The inset is a zoom on the calibration points to high-
light their proximity to the linear regression.

The calibration results are depicted in Figures 4.3 and 4.4. What can be seen from these latter
is that the ADXL326 is actually able to sense accelerations until ≈ 26 [g] (which is higher than
the announced 16 [g]). With the given ranges, this leads to sensitivities of 50.78 [mg] between
two consecutive integers for the Arduino Uno and 63.5 [mV/g] for the myDAQ (magnitude
predicted by [3]). As the range of interest for the acceleration is [1−ΓF , 1 +ΓF ] = [−3144, 5144]
[mg], the Z-axis output voltage of the ADXL326 is amplified using an op-amp based inverting
amplifier, with an intermediate follower for impedance separation. A schematic of the amplifier
is shown in Figure 4.5. The resulting calibration curve is given in Figure 4.6.

−

+Vin R1=1kW
−

+

R2=5.1kW

Vout

Vcc

2 = 1.67V
Follower

Amplifier
Figure 4.5: Sensitivity improvement circuit.
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Figure 4.6: Calibration using the myDAQ after sig-
nal amplification for a higher sensitivity. The inset
is a zoom on the calibration points. The resulting
sensitivity is 323.6[mV/g].

Assuming an infinite gain for the op-amps and with Vcc = 3.3 [V], R1 = 1[kW], R2 = 5.1[kW],
the output voltage equation writes as:

Vout = Vcc
2 (1 + R2

R1
)− R2

R1
Vin = 10.187− 5.1Vin (4.3)
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Analysis

The measured sinusoidal forcing is shown in Figures 4.7 and 4.8. One observes satisfying overlap
between the measurement and the pure sinewave. Some harmonics can be observed in Figure
4.8, the related total harmonic distorsion (THD) is :

THD = 100

√∑H
h=2 v

2
h√∑H

h=1 v
2
h

= 1.7867[%] (4.4)

Where h = 1 is the fundamental component and h > 1 are the harmonics. H = 8 here. The
very low THD obtained in eq. (4.4) allows to consider the forcing signal to be perfect for the
rest of the experiments. One can see in Figure 4.7 that the transverse accelerations along X and
Y directions are non-zero due to the absence of stabilizing stuff, they oscillate with the vertical
forcing with an acceleration amplitude of 75 and 136 [mg] (according to the 10-bit resolution of
the Arduino ADC) for the X and Y directions, respectively. We discuss this issue in Section 4.3
and conclude that it implies an an effective Faraday threshold ΓF,e lower than the theoretical
value ΓF accompanied by an uncertainty on the actual memory parameter of the experiments.
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Figure 4.7: Measured vs pure sine normalized accel-
eration waveforms. The inset is a zoom on one pe-
riod. The resulting mean square error is MSE =
2782.6[mg2] = 2.7826 · 10−3[g2].
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Figure 4.8: Measured vs pure sine normalized acceler-
ation spectra. The inset is a zoom on the harmonics
of the measured accemeration.

4.1.2 Droplet on-demand generator
Inspired from reference [40], a piezoelectric Droplet on-demand generator (DOD) has been
fabricated. The purpose of this DOD is to be able to produce droplets of highly repeatable
size ranging from 0.5 to 1.4 [mm] in diameter that will be directly injected in the bath with a
launching pad.

A schematic of the fabricated model is shown in Figure 4.9, where the pump and the translation
stage from the inspiration model have not been used for practical reasons. However, the model
is designed such that the nozzle outlet is aligned with the top of the fluid reservoir (∆h ≈ 0),
hence leading to a pressure equilibrium at the nozzle outlet. Also, as the droplet diameter varies
only by 1 % after 5000 generated droplets [40] due to a decreasing of the liquid level in the
reservoir, the reservoir is simply manually filled in, and the absence of pump is not too disturbing.
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Figure 4.9: Schematic of the constructed DOD, mod-
ified from [40]. The inset is a zoom on the nozzle
outlet.

Figure 4.10: Square signal that activates the piezo-
electric buzzer in order to generate a single droplet.
Taken from [40].

The piezoelectric buzzer [20] is activated with square pulses generated by the switching of a
bistable relay controlled by the Arduino Uno. Based on the voltage input by a source (Vs ∈ [0, 50]
[V]) and the command signal coming from the Arduino Uno, the bistable relay passes from
applying −Vs to +Vs at the terminals of the piezo. Each time the push button shown in Figure
4.11 is pressed, a square pulse of amplitude Vs and width Wp controllable by the Arduino Uno is
applied on the piezo, and a droplet is generated. The LED serves as an indicator. VPIN is also
input in the myDAQ to have another indicator on the Labview front panel shown in Figure A.2.

Unfortunately, due to an upper bound for the switching frequency of the used bistable relay,
the prescribed [40] pulse width Wp ∼ 600[µs] in unreachable. As depicted in Figure 4.12, there
is a gap between the expected pulse width written in the Arduino code and the measured pulse
width at the piezo terminals. The shortest obtained pulse width is around 1000[µs] before the
piezo activation vanishes for shortest Arduino pulse width commands. As shown in Fig. 7 (a)
of [40], this often leads either to the generation of multiples droplets in one pulse or to high
variations in the generated droplet diameter. This problem is skirted by a proper calibration of
the relative position between the DOD and the launching pad such that only one generated
droplet enters the oscillating bath.

VPIN

1 kW

5 V

Figure 4.11: Push button montage for generating a
droplet.

Figure 4.12: Pulse widths gap between the Arduino
Uno command and the measured pulse applied at the
piezoelectric buzzer terminals.

Regarding the droplet diameter estimation, the "droplet_fall_analysis.m" [35] program has been
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developed to give an estimation at the output of the nozzle based on image analysis. Different
processing steps are applied on the original images to perform the droplet detection, yielding :

Algorithm 2

1. Compute the greyscale difference Id[n] between the current frame I[n] and the reference frame
I0 (without droplet).

Id[n] = I[n]− I0 (4.5)

2. Convert the image difference into a binary image where the 1’s (white pixels) are the pixels p
satisfy the following condition1 :

(p > 3σId
)&&(p > 3) (4.6)

Where σId
is the standard deviation of the pixel values of the image difference Id.

3. Apply salt and pepper filtering with a 2x2 square kernel. [30]
4.

n← n+ 1 (4.7)

Figure 4.13: Illustration of the droplet detection algorithm results for each step. All the axes are expressed in
[mm], with the origin at the top left corner.

The droplet estimation is then given as the mean width of the remaining droplet fall binary
image.
In practice, as previously explained, the droplet diameter is rather estimated directly when
walking inside the stadium bath. In that case, "estim_diam.m" is used. A zoom is applied
on the droplet position, and the user is invited to click on two opposite sides of the droplet,
typically with 20 different images of the same droplet and the program computes the mean of
these estimations. Let us now characterize the droplet generation results.

1This condition has been arbitrarily chosen within the ranges of values that fit the eye expectation :
[2.5σId

− 4σId
] and [0− 8] for the two lower bounds.
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Characterization The estimation of the droplets’ diameters is performed by manual se-
lection on multiple images of the same droplet on images with Matlab. To avoid any bias
in the estimation, the different selections are done in randomly selected directions in the 2D plane.

The results in Figure 4.14 show multiple estimations of the diameter of the same droplet on
consecutive images coming from the same video sequence. It can be seen that averaging the
diameter estimations over 10 selections or more leads to a confidence in the estimation lying in
the [−0.02, 0.02] [mm] interval.

In Figure 4.15, we show the estimations of ten different droplets generated with the same
droplet generation parameters. It can be seen that the difference between the generated droplets’
diameters with the DOD remains lower than 0.1[mm] and allows for doing experiments with
droplets of approximately the same diameter.

The crucial factor limiting the predictability and repeatability of droplets is the launching pad.
Indeed, the droplet output from the nozzle of the reservoir and arriving on the launching pad
generally bounces a few times (instead of sliding) before continuing towards the bath, and loses
part of its volume on its way. The diameter of the droplet coming in the bath thus highly
depends on the position of arrival on the launching pad as well as the launching pad’s sliding
conditions. These conditions seem practically unpredictable with the current setup configuration
and are repeatable only in the short term.

Figure 4.14: Multiple estimations of the diameter of
the same droplet on consecutive images coming from
the same video sequence. The measured mean is Dm =
0.51[mm] with standard deviation σD = 0.032[mm]
over 43 measurements.

Figure 4.15: Estimations of different droplets’ diam-
eters generated with the same parameters (nozzle of
diameter 1[mm], voltage Vs = 50[V ] and pulse width
Arduino command Wp = 4700[µs]) averaged over 20
different images.
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4.1.3 Surface visualization
The wave dynamics represent half of the complexity of the walking droplet pilot-wave system.
To develop a method in order to estimate the wavy liquid surface profile, at least qualitatively,
is a key issue for explaining several phenomena reported in walking droplet experiments. The
objectives of this section are to list the different methods that have been investigated, discuss
the choices made in the implementations and finally give some experiment results.

Ray deviations

Figure 4.16: Schematic of the experimental montage used for exploiting the ray deviations principle.

The first method that was used to visualize the surface profile of bouncers and walkers [60]
consists in exploiting the deviation of the parallel rays emitted by a light source induced by the
slope of the liquid surface. As shown in Figure 4.16, the lighting is positioned such that it is
directed to reflect on the camera lens if the liquid surface is at rest. If the local slope of the
surface is weak, the rays are reflected towards the camera lens and the pixel has a high intensity.
On the other hand, for steep slopes, the light rays are strongly deviated and do not go into the
camera lens, the corresponding pixels thus appear darker with low intensity. Some alternatives
like adding a striped pattern are based on the same principle. [43]
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1 [cm]
Figure 4.17: Obtained liquid surface wave field for a
single walker. The yellow arrow shows the direction
of motion of the walker, which can be guessed by the
small shift between the droplet’s position and the wave
field center, as described in [19, 63].

1 [cm]
Figure 4.18: Obtained liquid surface wave field for an
orbiting pair of walkers. The yellow lines are placed
on the apparent destructive interference locations to
highlight the interference pattern.

Brewster angle

Another idea, that was not found in the literature for this type of application, is to take
advantage of the Brewster angle θB = arctan(n/na) where n = 1.4 and na = 1 are the refractive
indices of the silicone oil and the air, respectively. We thus have θB = 54.46° here. We recall
the Fresnel equations for non-magnetic media :

E1r‖ = n cos(θ2)−na cos(θ1)
n cos(θ2)+na cos(θ1)E1‖ E2‖ = 2n cos(θ1)

n cos(θ2)+na cos(θ1)E1‖

E1r⊥ = n cos(θ1)−na cos(θ2)
n cos(θ1)+na cos(θ2)E1⊥ E2⊥ = 2n cos(θ1)

n cos(θ1)+na cos(θ2)E1⊥
(4.8)

Where the r, 1, 2, ‖, ⊥ subscripts stand for reflected, incidence medium, second medium,
components parallel and perpendicular to the incidence plane, respectively. θ1 and θ2 are the
angles of the incident and refracted light rays wrt the normal of the liquid surface plane at
rest. As we are interested in the light rays that come from the source and are reflected back
into the camera lens, we do not need the two equations from the right hand side. By placing a
polarizing filter removing the ⊥-polarized component in front of the camera, and the light source
in Figure 4.16 such that θ1 = θB = 54.46° when the surface is plane, the ‖-polarized component
of the light rays would be entirely refracted at the interface and no light would go into the camera.

For a typical wave peak-to-peak amplitude of ∆z = 20[µm] [19] and the wavelength λF = 4.72
[mm], considering a sine wave, the maximum slope is π∆z/λF = 0.0132277 [m/m], leading to
a deviation angle of the line normal to the liquid surface of ∆θ = 0.7578°. The proposition
consists in choosing θ1 = θB +∆θ ≈ 55.22° to obtain a range as shown in Figure 4.19 where the
true incidence angle at each position depends on the slope of the liquid surface on this latter.
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Maximum ratio for parallel component

 = 0.7578°

range

Figure 4.19: Ratio between the intensity received by
the camera lens for the positions of steepest slope at
the liquid surface I∆ and the intensity if the liquid
surface at rest I0 for varying incidence angle θ1. This
ratio tends to infinity at the Brewster angle as it
corresponds to I0 = 0, announcing a good contrast
between weak and steep slopes. The inset is a zoom
on the active range of effective incidence angles that
will be possible.

Variation of intensity wrt  for 
1
 = 55.22°

parallel

perpendicular

Figure 4.20: Ratio between the intensity I∆ received
by the camera lens for varying deviation angles ∆θ

and the intensity if the liquid surface at rest I0 for
a fixed incidence angle of θ1 = 55.22°. One observes
the ratio tends to zero as the effective incidence angle
tends to θB for negative slopes. It can be seen that
the sensitivity is better for positive slopes with this
method.

This method has not been tested because of a lack of necessary material ( polarizing filter, big
lenses, ...). The extension of this proposition to the 2D case has not been studied.

Schlieren method

"Schlieren photography (from German; singular "Schliere", meaning "streak") is a visual process
that is used to photograph the flow of fluids of varying density. The classical implementation of
an optical schlieren system uses light from a single collimated source shining on, or from behind,
a target object. Variations in refractive index caused by density gradients in the fluid distort
the collimated light beam. This distortion creates a spatial variation in the intensity of the
light, which can be visualised directly with a shadowgraph system." [85]

Two Schlieren based methods were investigated for the liquid surface profile reconstruction :

• The Phase-shifting schlieren (PSS) method [32, 64] which consists in placing an intensity
filter in front of the camera, such that the light rays slightly deviated by the liquid surface
appear brighter or darker depending on the deviation. As for the Brewster angle based
method, this one was not implemented for practical reasons. However, as no article was
found in the literature to discuss the 2D case, an extension to the recovery of the 2D
surface is proposed in Figure 4.23.

• The Free-surface synthetic schlieren method [31, 53, 54, 66] which consists in comparing
the obtained pattern in the current image to a reference pattern when the liquid is at
rest to compute the displacement of each individual pixel of the reference pattern. These
displacements are directly related to the gradient of the liquid surface at position, a
quantitative estimation of the liquid surface is finally obtained by computing the inverse
gradient of the displacement field. This method has been implemented and gives satisfying
results, see below.
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PSS The working principle of this system is shown in Figure 4.21. The linear filter shown in
Figure 4.22 is an example, where other types of response curves could be exploited like sinusoidal
ones. The main drawback of this method is that the response curve is only valid for one direction.
Variable neutral density filters exist in 2D, but with the filtering variation corresponding to an an-
gular variation around the image plane center, the information on the deviation magnitude is lost.

Figure 4.21: Schematic drawing of the Schlieren system
working in reflection. Taken from [32]

Figure 4.22: Conventional Schlieren:(a) arrangement
of the knife-edge,(b) typical response curve. Taken
from [32]

The proposed way to extend this principle to the 2D case, is to deal with multiple colors
simultaneously. Either a 2D rainbow optical filter could be used, varying the color filtering with
the deviation magnitude and the intensity filtering with the deviation orientation or conversely.
Or, as shown in the proposal in Figure 4.23, the 1D principle could be extended by assigning
a color for one direction (in that case, blue for deviations along êx) and another one for the
second direction (in that case, red for deviations along êz). The supplementary materials needed
wrt Figure 4.21 are 2 beam-splitters, 2 color filters and 3 mirrors. The basic idea behind this
proposal is to reorient the second direction along the first, such that they both benefit from
the filter contribution. The red deviated rays arrive rotated by 90° in the CCD, which can be
simply corrected during the image processing.
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Figure 4.23: Schematic of the proposed montage for a 2D free surface recovery with the PSS method.

FS-SS The Free-surface Synthetic Schlieren method was the one implemented in this work
because of its advantages regarding the necessary material, cheapness and theoretical background.
The following results are taken from ref. [53] and will support the discussion on the validity of
the assumptions made in the current implementation.

The objective is to find the optical displace-
ment field δr = M′M” of each object point
M , where M ′ and M” correspond to the vir-
tual objects for flat and deformed interface
respectively, induced by the refraction of the
light scattered from a pattern located at z = 0
through the interface z = h(x, y). Once the
displacement field has been obtained, we need
to relate it to the surface gradient ∇h of the
surface. The obtained relationship between
the free surface gradient and displacement field
is :

∇h = −δr
h∗
, with 1

h∗
= 1
αhp
− 1
H
> 0

(4.9)
Where α = 1 − na

n
, hp = h0 + n

ng
hg + n

na
ha is

the effective surface-pattern distance, taking
eventual glass and air layers between the dot-
pattern and the liquid into account, and H is
the pattern-camera distance.

Figure 4.24: Three-dimensional ray geometry for a
horizontal interface (reference case). Taken from [53].
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Figure 4.25: Two-dimensional view of the vertical
incidence plane COM . A ray coming from a point
M located on the pattern appears to come from the
virtual object B′. In the pattern plane, it appears to
come from the point M. Taken from [53].

Figure 4.26: Two-dimensional view of the incidence
plane CAM . A ray coming from M appears to come
from the virtual object B”. In the pattern plane, it
appears to come from the point M”. Taken from [53].

Behind eq. (4.9), three approximations were considered :
• Paraxial approximation The pattern-camera distance H is much larger than the field size
L, yielding a maximum paraxial angle βmax ' L/(

√
2H)� 1. In the actual experimental

setup, we have βmax ' 7.6/(
√

262) = 0.0867[rad] = 4.9°. This value is considered as a
good tradeoff as the approximation remains reasonably valid and increasing H may cost
more difficulties in the manual handling of the camera and a decreasing of its fixation
stability.

• Weak slope approximation The angle γ between the unit vector normal to the interface n̂
and the vertical vector ẑ is small. As a consequence, the surface slope θ measured in the
incidence plane is also small. As discussed with the Brewster angle method, we typically
have θ = 0.7578°.

• Weak amplitude approximation Denoting h(x, y) = hp + η(x, y) the surface height, the
amplitude |η| is small compared to the mean height hp. As discussed with the Brewster
angle method, we typically have |η| = 10[µm] and hp > 6[mm], yielding a ratio of 0.16%.

The invertibility condition, which requires that the focal length associated to the surface
curvature is larger than the surface-pattern distance everywhere in the imaged field, is verified
with :

hp,max = 11[mm] < hp,c = λ2
F

4π2αη0
= 197.5[mm] (4.10)

Now that the assumptions have been verified, it remains to discuss the reference pattern design
and the method for estimating the displacement field. About the reference pattern, a set of
randomly distributed dots, partially overlapping, is used. In the example shown in Figure
4.27, dots of diameter 0.3 [mm], made of concentric circles of increasing grayscale, with an
overall black-on-white density ratio of approximately 1:2, have been numerically generated
with "makebospattern.m". The "makebospattern.m" code has been slightly modified to add
the possibility of generating a RGB dot pattern, which may reduce the ambiguity of points
association (not exploited in this work).
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(a) (b)

Figure 4.27: Random dot pattern used in the present experiments, as imaged by the 1080x720p camera in the
stadium bath. Dots of diameter d = 0.3 [mm] were numerically generated, with a density of 50%, resulting in
dots of approximately 5 pixels in the camera sensor. (a) 2 [cm] wide window showing the density (b) zoom on a
2 [mm] wide window, highlighting the varying grayscale of the dots. We observe a lower resolution than in Fig.
7(b) in [53].

The displacement field is finally obtained by using a rewritten DIC algorithm (see "Sur-
face_Visu_Correlation.m") for points association between the reference pattern image and
the deformed one. The user can select the ROI where the liquid surface estimation will be
performed, which can be any rectangle in the original image. Interrogation windows of size
16x16 pixels are used for the computations of the correlation functions. The displacement for
point (a, b) of the reference image is obtained as :

δr(a,b) = argmax(u,v)(f � g)(u, v)

= argmax(u,v)

∑
(i,j)∈S(a,b)

(f(i, j)− fm) (g(i+ u, j + v)− gm)√∑
(i,j)∈S(a,b)

[f(i, j)− fm]2∑(i,j)∈S(a,b)
[g(i+ u, j + v)− gm]2

= argmax(u,v)(f̃ ∗ g̃)(−u,−v)
= argmax(u,v)F−1

{
F{f̃}·F{g̃}

}
(−u,−v)

(4.11)

With :

fm = 1
n(S)

∑
(i,j)∈S(a,b)

f(i, j), f̃(i, j) = f(i,j)−fm∑
(i,j)∈S(a,b)

[f(i,j)−fm]2 (4.12)

And similarly as eq. (4.12) for g. f (resp. g) denotes the reference pattern (resp. current
observed) image in grayscale. The subscript m stands for the mean pixel value in the in-
terrogation window S(a,b) with n(S) being the number of pixels in this window (here 16x16),
and f̃(i, j) is the normalized reference pattern. The � symbol denotes the normalized 2D
cross-correlation operation (N2DCC), ∗ denotes the convolution operator while · denotes the
pointwise product and F denotes the Fourier transform. The Fourier transform is performed
with the FFT algorithm and only aims to reduce the computing complexity from O(N4) to
O(N2 log(N2)) for a two dimensional function, yielding a computing time reduction of 32 for
a 16x16 interrogation window. The obtained gradient is finally inverted using a least-squares
criterion with "intgrad2.m".
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a)

b)

c)

d)

Figure 4.28: DIC based surface profile recovery results. The labels are removed for visibility issues. All the axes
are expressed in [m] with the origin at the top left corner. For each row, the image on the left is the reference
pattern, the one on the center is the modified image and the surface estimation is given on the right. (a) Faraday
planar wave (b) Droplet bounce (c) Faraday gridlike wave (d) typical crest created by a droplet bounce.
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In the results given in Figure 4.28, we observe that (a) and (c) look closer from the true liquid
surface. This can be explained by the bigger amplitude of the waves when passed the Faraday
instability threshold, a bigger amplitude unavoidably means steeper slopes and finally longer
horizontal displacements of the points in the deformed image. Indeed, with the resolution of the
current camera, the longest point displacement is between one and two pixels, what is definitely
not enough for a smooth and accurate reconstruction. Note that no interpolation to the subpixel
level has been performed. Moreover, the temporal resolution of the camera (25 FPS) is not able
to capture the surface waves with typical phase velocity vφF = 190.8[mm/s] = 7.632[mm/image],
the results from Figure 4.28 represent the currently established stationary waves only.

Although this method gives satisfying results for the wave surface recovery, its intrinsic black
and white looking uniformity can significantly deteriorate the droplet tracking. One way to
avoid this issue may come from the opportunity to use a more sophisticated reference pattern
with the DNN based surface recovery described here below.

DNN based

A more recent approach proposed in [72] consists in giving the reference pattern and refraction
image as input to a neural network for the surface profile estimation. The network architecture
is called FSRN for Fluid Surface Reconstruction Network and "consists of two sub-nets : 1) an
encoder-decoder based convolutional neural network (FSRN-CNN) for per-frame depth and
normal estimation and 2) a recurrent neural network (FSRN-RNN) for enforcing the temporal
consistency across multiple frames". Different loss functions are combined in the architecture,
each one aiming to optimize the consistency of the depth map, normal map or with the related
physics.

Moving to this type of fluid surface reconstruction would allow to replace the black and white
dot pattern used in Section 4.1.3 by a smoother one, thus improving the droplet tracking
performances. An attempt to contact the authors was made to obtain the open-source code and
training datasets that were not available yet on their website, but did not receive any answer.

4.1.4 Droplet tracking
In order to automatize the observations made on walkers, the usual technique is to use the
images taken by the camera, and to apply image processing tools to quantify the results. For the
detection of the droplet position in the vibrating bath, a droplet tracking algorithm is necessary.
A first unavoidable step requires calibrating the lighting configuration of the bath, trying to
increase the contrast between the walking droplet and the background. With the light ray
deviation technique (Figures 4.17 and 4.18) this contrast is clearly sufficient (discussion on
Figures 4.32 and 4.33). With the random black and white dot pattern used for the surface
recovery, this is more challenging. Indeed, it is difficult to increase the contrast between the
droplet and the background while uniformly lighting the bath. The usual technique to deal with
this it consists in lighting the bath with grazing incidence. This is not possible with the current
setup (see Figure 4.1). In this section, we give a mathematical description of the tracking
implementation accompanied with the intuition behind and give quantitative analysis, also by
comparison with manually computed trajectory serving as ground truth.

For each frame n, the droplet’s center c is chosen as :

c[n] = arg max[x,y] gn[x, y] (4.13)
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Where :

gn[x, y] =
∣∣∣(In|Rn

− In−1|Rn
)[x, y] ·F−1

{
F{In−1|Cn

,Rn}·F{In|Rn
}
}

[x, y]
∣∣∣ (4.14)

Where a bold font denotes a vector or a matrix, In|R is the image at integer time frame n
limited to the region of interest, F denotes the Fourier transform operator, Rn and Cn denote
the ROI and correlation zone sets of coordinates at time frame n, respectively.

In eq. (4.14), the metric that is maximized is the combinination (pointwise product) of an image
difference and a correlation.
The first term (In|Rn

− In−1|Rn
)[x, y] computes the difference between the current and the

previous frame, in the ROI Rn. The intuition behind this is that the walker’s displacement
should induce a high intensity variation at its current and previous locations. This image
difference is shown in Figure 4.29 (d).
The second term F−1

{
F{In−1|Cn

,Rn}F{In|Rn
}
}

[x, y] computes the DIC between the blue
box in Figure 4.29 and Rn in the current image In. The Fourier transform has the same purpose
as in eq. (4.11), i.e. reduce the computational cost. The second input parameter in the Fourier
transform in F{In−1|Cn

,Rn} stands for the padding to the size of Rn. Note that the correlation
is normalized at the end, as viewed in Figure 4.30.

Figure 4.29: Tracking algorithm display. The axes are expressed in pixel values for this display. (a) Final full
frame with the computed trajectory. The color is varying along the trajectory to give qualitative information of
the time spent at a given place. (b) ROI Rn with the correlation zone Cn delimited by the blue box (c) ROI with
the currently computed droplet’s position, marked by a red circle (d) Image difference (In|Rn

− In−1|Rn
)[x, y].
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Figure 4.30: Result of the correlation
F−1 {F{In−1|Cn

,Rn}F{In|Rn
}
}

[x, y] normal-
ized at the end. The axes are expressed in pixel values
for this display. One observes multiple sets of local
maxima, that will be discriminated thanks to the
image difference contribution. The axes are expressed
in pixel values for this display.

Figure 4.31: Final obtained metric gn[x, y], with c[n]
marked by a red circle. The axes are expressed in pixel
values for this display. One observes the constructive
combination between the image difference and the
correlation, removing the ambiguities of both. The
axes are expressed in pixel values for this display.

The results in case of ray deviation lighting are shown in Figures 4.32 and 4.33. One can see the
computed trajectory accurately follows the ground truth. Most of the oscillations are narrower
than the actual droplet, and consequently depend on the position of the detected point inside
the droplet. From Figure 4.33, it can be viewed that most errors are around 3 pixels wide
(0.35 [mm] in this analysis). A couple of outliers are present yet, always induced by parasite
reflections due to an non perfect illumination. However, the latter do not affect the assignment
correspondence with the true trajectory. They could simply be identified because of their unnat-
ural spacing with the rest of the trajectory and replaced by an interpolation of the other locations.

Figure 4.32: Comparison between manually and auto-
matically computed trajectories. For the first case, the
droplet center was manually selected on each frame,
for the second one, the positions were numerically
computed with eq. (4.14). Both axes are expressed in
[m].

Figure 4.33: Histogram of the droplet position error
in pixels for the trajectory in Figure 4.32.
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The results in case of dot pattern surface recovery lighting are shown in Figures 4.34, 4.35
and 4.36. One can see the computed trajectory also follows the ground truth, but with more
deviations due to correlation. From Figure 4.36, it can be viewed that most errors are around
5-6 pixels wide (0.7 [mm] in this analysis) which is twice bigger than in the ray deviation
illumination case and which is the order of magnitude of the droplet’s diameter. Some outliers,
i.e. detected positions very far from the total detected trajectory, may still be removed. This
worsening of the tracking supports the interest given for a DNN based approach for the surface
recovery given in Section 4.1.3.

Figure 4.34: Tracking algorithm display for the dot pattern case. (a) Result of the correlation. (b) final obtained
metric gn[x, y], with c[n] marked by a red circle. (c) ROI Rn with the correlation zone Cn delimited by the
blue box (d) ROI with the currently computed droplet’s position, marked by a red circle (e) Image difference
(In|Rn

− In−1|Rn
)[x, y]. The axes are expressed in pixel values for this display.

Figure 4.35: Comparison between manually and auto-
matically computed trajectories. For the first case, the
droplet center was manually selected on each frame,
for the second one, the positions were numerically
computed with eq. (4.14). Both axes are expressed in
[m].

Figure 4.36: Histogram of the droplet position error
in pixels for the trajectory in Figure 4.35.

51



Chapter 4. Walking droplet experiment 4.2. Validation

Because of noisy reflections due to the way the bath and the droplet are illuminated, the
correlation values were jugded unsufficiently reliable thus the method proposed in [59] to
interpolate the droplet position to a subpixel level was not considered.

4.2 Validation
An important remark on the described setup is that the observed Faraday instability threshold
occurs for a non dimensional acceleration amplitude of Γ = 2350[mg] instead of the theoretical
prediction of ΓF = 4144[mg]. In front of this issue, the oscillation frequency has been checked
by acoustics with the Android app Phyphox. The vertical actuation amplitude has also been
verified with Phyphox by sticking a smartphone on the bath and comparing the measurement
with the accelerometer output. Finally, the viscosity of the silicone oil has been estimated with
the falling ball method according to [1] yielding µ̂ = 19.6[mPa.s] ≈ µ = 19[mPa.s]. To ensure
a good damping of the surface waves induced by the borders, the stadium well has been printed
in 3D, with a liquid height outside the well h1 < 1[mm] and a minimal distance between the
well and the borders of the bath of 7[mm].

This discrepancy is thought to be due to an imperfect horizontality of the bath, where as shown
in Fig. 4 of [37] even a small component of the actuation in the horizontal plane of the bath leads
to a saturation of the surface waves vanishing. In the measurement in Figure 4.7, we can indeed
observe a non negligible component along the Y-axis of amplitude ≈ 120[mg]. Consequently, as
the dependency of the memory parameter Me on the tilt of the bath is unknown, it is chosen
to give an estimation of this tilt in terms of Roll-pitch-yaw rotation convention and to simply
give the non-dimensional acceleration peak Γ measured along the Z-axis (as the two
other components can be deduced from the rotation).

The objective is to find, from the measurements in Figure 4.7, the tilt angles associated to the
rotation matrix R(α, β, θ) = Rz(α)Ry(β)Rx(θ), where we assume no rotation around the Z-axis
(hence α = 0), such that the measured 3-axis acceleration [X ′ , Y ′ , Z ′ ]T is related to the truly
applied acceleration [0, 0, Z]T as :X

′

Y
′

Z
′

 = R(α = 0, β, θ)

0
0
Z

 =

 cβ sβsθ sβcθ
0 cθ −sθ
−sβ cβsθ cβcθ


0

0
Z

 =

sβcθZ−sβZ
cβcθZ

 (4.15)

where s and c stand for the sine and cosine operations, respectively. θ is directly deduce from
the mean mY ′ of Y

′ due to the gravity acceleration :

θ = arc sin
(
mY ′

mZ′

)
= arc sin

( 70
981

)
= 4.09° (4.16)

and β is obtained by dividing the first line of eq. (4.15) by the third :

β = arc tan
(
X
′

Z ′

)
= arc tan

( 80
1795

)
= 2.55° (4.17)

This tilt cannot be cancelled because of the lack of suitable material. This means that there
is an uncertainty on the current memory parameter Me, also inducing issues regarding the
reproducibility of the obtained experiments results.
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4.3 Results and discussion

(a) (b)

Figure 4.37: Walking droplet observations in the stadium cavity with parameters : (f,Γ, D) =
(80[Hz], 1920[mg], 1.05[mm]). All the axis are expressed in [m] and the colorbar in (b) gives the number
of occurrences. (a) Obtained trajectory. The colors along the trajectory evolve gradually from the starting point
to the ending one. (b) 2D empirical density corresponding to (a).

(a) (b)

Figure 4.38: Walking droplet observations in the stadium cavity with parameters : (f,Γ, D) =
(80[Hz], 1920[mg], 1.05[mm]). (a) Isometric view of the 2D histogram from Figure 4.37(b). (b) Histogram
of the walker’s speed.
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The global observation made with a walking droplet inside the stadium cavity is represented
in Figure 4.37. We clearly see that a pattern shows up, having an ∞-like shape. An iso-
metric view of the 2D histogram from Figure 4.37(b) is also shown in Figure 4.38(a). An
histogram of the measured droplet’s velocity is shown in Figure 4.38(b), we observe a very
large peak corresponding to the free walking speed between the reflections on the cavity bor-
ders, while the deviations from this peak correspond to the reflections on the borders of the
cavity combined some noise in the measurements related to the results described with Figure 4.33.

Figure 4.37(b) gives the empirical pdf, representative of the probability of finding the walking
droplet at any location in the stadium. As shown in the left column from Figure 4.40, this
pattern is very robust, in the low memory regime, against forcing frequency variations (f0 has
been varied in the [70 − 85][Hz] range) and thus to variations in the resulting length ratios
(λF/Rb has thus been varied in the [0.279− 0.24] range, useful for the comparison as written
in eq. (5.6)). In the right column though, we can see that the pattern tends to disappear as
the memory parameter Me increases. Figure 4.40(e) is not relevant for the analysis of the
pattern but is shown to highlight the fact that imperfect horizontality of the bath (as discussed
in Section 4.2) influences the behaviour of the droplet. As for very low memory regimes, the
droplet’s velocity is low, it tends to be reflected far from the borders and this highlights a
preferred side in the stadium cavity due to the slight tilt of the bath.

(a) (b)

Figure 4.39: Walking droplet observations in the stadium cavity with parameters : (f,Γ, D) =
(80[Hz], 2200[mg], 0.95[mm]). (a) Trajectory. (b) Empirical 2D pdf.

Another experiment has been conducted near the effective Faraday instability threshold
Γ / ΓF = 2300[mg]. We can observe in Figure 4.39(a) that the high memory regime in-
duces loopy reflections on the right side border, as observed in ref. [61]. In this case, the ∞-like
shape has disappeared to yield another stationary pattern. The reproducibility of other patterns
than the one from Figure 4.37 in the high memory regime should be tested with more reliable
experimental setups.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.40: Robustness of the ∞-like shaped pattern against forcing variations. All the axes are expressed in
[m]. In all cases, the droplet diameter D ∈ [0.75− 0.85][mm]. Left column : variation of the frequency f0 in
the range of walking possibilities given in Figure 3.6. (a) f0 = 70[Hz], (b) f0 = 75[Hz], (c) f0 = 80[Hz], (d)
f0 = 85[Hz]. Right column : variation of the shaking amplitude Γ with f0 = 80[Hz]. (e) Γ = 1650[mg], (f)
Γ = 1900[mg] (g) Γ = 2090[mg] (h) Γ = 2200[mg].
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Electronic transport analysis

Quantum billiards (or cavities) are mesoscopic billiards. Electrons shoot over this "table" with
velocities bigger than 105[m/s], colliding elastically with the walls until they disappear into
one of the pockets (a.k.a. leads). The motion of an electron in a typical metal wire is very
different from the rectilinear motion of a billiard ball. The impurities in the metal scatter the
electrons in all directions, so that the motion becomes completely unpredictable. One speaks of
a "random walk". A measure for the influence of impurities on the electron motion is the so
called "mean free path" Lµ which gives the typical distance an electron can move before colliding
with an impurity. Therefore, the analysis of electrons behaviour inside quantum billiards has
been possible by obtaining a mean free path much greater than the size of the billiard. The
electronic industry has become very skilled at fabricating semiconducting materials with a large
mean free path. The world record is around 100[µm]. To eliminate the impurities a technique is
used called "molecular beam epitaxy". [87] A crystal is grown one atomic layer at the time, until
a nearly perfect lattice of atoms is obtained. Because the process is controlled on the atomic
scale, it is possible to vary the composition of the individual atomic layers in the crystal. This
is used to fabricate a billiard table for electrons which is not only very smooth (i.e. with a large
mean free path), but also perfectly flat. From such materials, the so-called heterostructures,
one can then carve out extremely small geometries such as quantum dots, or billiards, using
lithography techniques combined with metal deposition or etching.

Focusing our discussion on the stadium billiard, the existence of quantum scars (introduced in
Section 2.2) had been theoretically predicted [29] before being experimentally observed by C.
Marcus and his associates in 1992 [46]. The experimental observations have then been followed
by numerical simulations conducted by Akis, Ferry and Bird [4, 5] as shown in Figure 5.1. Both
in the experimental and numerical observations, it is shown that the low field magnetoconduc-
tance G of stadium shaped quantum dots can be periodic, indicating that only a few regular
orbits dominate the quantum transport, even though the structure is classically chaotic (as
discussed in Section 2.1). The important role played by the contacts, which essentially select
certain eigenstates to dominate the transport, is pointed out in ref. [4]. They also show that
transport in open quantum dots can be mediated by single robust eigenstates (generally lo-
calized within the interior of the dot), even when the dot leads support several propagating modes.

It has to be pointed out that the quantum scars can always be associated to an analog classical
periodic orbit. These scars are also shown to exist in relativistic systems. Indeed, using graphene
as a paradigm, ref. [26] have discovered relativistic quantum scars for both closed and open
systems, as depicted in Figure 5.2.
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Figure 5.1: Simulations from ref. [5]. (a) Conductance fluctuations (δg) as a function of magnetic field B. The
right inset shows the corresponding power spectrum and the left inset the collimated beams emerging from
a Quantum Point Contact. (|ψ(x, y)|2) versus x and y is plotted for (b) B = 0.135[T ] and (c) B = 0.288[T ],
showing a rectangular scar in both cases. (d) also corresponds to B = 0.288[T ], but now phase breaking is
introduced to isolate the effects of the input lead.

Figure 5.2: Typical scars in a stadium-shaped graphene confinement. The energy values for (a–h) are E/t =
0.25347, 0.36358, 0.57665, 0.60699, 0.81956, 0.91061, 0.97722, and 0.99198, respectively. The dashed lines represent
classical periodic orbits associated to these scars. Taken from ref. [26].
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5.1 Quantum simulations

Name Expression Value [Unit]
Planck’s constant h 6.626069e-34 [J.s]

Electric charge of the electron e 1.602 · 10−19[C]
Light celerity c 299792458 [m/s]

Boltzmann constant kB 1.3806503 · 10−23 [kg.m2/Ks2]
Mass of the electron me 9.1 · 10−31 [kg]
Hopping parameter t 2.8 [eV ]
Lattice parameter asquare 0.25 [nm]

Default Fermi energy Ef 0.87 [eV ]
Scaling parameter s 1 [-]
Applied potential Vg 0 [eV ]

Applied magnetic field B 0 [T ]
Width of the leads width_leads 2.8[nm]

Stadium semicircle radius Rq 11.275[nm]
Stadium length L 45.1[nm]

Table 5.1: Values used for the quantum numerical simulations

For the simulation of the electronic transport in a stadium cavity, two Python packages have
been used in parallel : Kwant and Pybinding to develop the "Stadium_Kwant.ipynb" and
"Stadium_Pybinding.ipynb" codes, respectively (see the Supplementary materials [35]). Both are
used for numerical tight-binding [86] calculations in solid state physics. Concretely, they resolve
the single electron time independent Schrödinger’s equation in an arbitrary chosen geometry
(see Appendix B). The default values used for the simulations are given in Table 5.1.
In practice, the confinement of electrons in a 2D space is performed by the use of heterostructures,
leading to a 2 dimensional electron gas (2DEG) [87]. In the simulations, we will directly consider a
2D system. The usual material allowing to confine the electrons in a 2DEG is the heterostructure
AlxGa1−xAs. As described in Appendix B, the real lattice is approximated by a simpler lattice
in the simulations, in this case a square lattice, as shown in Figure 5.3.

Figure 5.3: Schematic of a square lattice where the
atoms are represented by blue balls. The lattice pa-
rameter is a and each atom position is given by a
vector Rn where n is the atom label running over the
couples (i, j). Taken from [52].

Figure 5.4: The energy dispersion (band structure) of
eq. (5.1) is depicted in blue as a function of kx for
ky = 0 and E0 = 4t. A Taylor series development of
this curve for small energies is depicted with the red
dashed line. Adapted from [52].

Following reference [52], as we consider only the neighbouring atoms for the hopping energy
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(the energy gained by an electron two be able to go from one atom to another), the energy
dispersion can be expressed as :

E = E0 − 2t (cos(kxa) + cos(kya)) (5.1)
As we consider a single electron transport in this application, the energy range available for the
electron is small, resulting in a low Fermi energy. By looking eq. (5.1), it implies k = (kx, ky) ∼ 0.
The energy (by always considering E0 = 4t) can then be expressed with the second order Taylor
series as :

E = t
[
(kxa)2 + (kya)2

]
= ta2k2 (5.2)

Where k2 = k2
x + k2

y. The approximation in eq. (5.2) is considered valid as long as the
condition Ef < 0.5t is verified (this condition is thus checked in the codes [35]). This expression,
represented in Figure 5.4, is actually the kinetic energy for a free particle described by the
simple equation :

−~2

2m ∇
2ψ(r) = Eψ(r) (5.3)

There is no potential term in this Hamiltonian. The solutions for the energy and the wave are :

ψ(r) = exp(ik · r) E = ~2k2

2m (5.4)

By comparing eq. (5.2) and eq. (5.4), we can determine the effective mass m of the electrons of
our square lattice as a function of the lattice and hopping parameters a and t :

m = ~2

2a2t
(5.5)

The conclusion is that electrons behave as free particles but their mass is modified by the
presence of the periodic lattice.

To make the quantum simulations comparable to the experimental results obtained with walking
droplets in Section 4.3, we impose the same ratio between the wavelength and the stadium
semicircle radius, i.e. :

λ

Rq

= λF
Rb

(5.6)

Where Rq and Rb denote the stadium semicircle radii in the quantum simulations and in the
experiments ("b" stands for "bath"). The Fermi wavelength λ is related to the energy E as :

E = ~2k2

2m =

(
h

2π

)2 (2π
λ

)2

2m = h2

2mλ2 (5.7)

The condition on the ratio λ/Rq from eq. (5.6) is fulfilled in "Stadium_Kwant.ipynb" and
"Stadium_Pybinding.ipynb" by imposing the Fermi energy E = Ef < 0.5t, computing the
resulting Fermi wavelength λ from eq. (5.7) and choosing the cavity dimensions (hence Rq)
consequently.
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5.2 Results and discussion

(a) (b) (c)

Figure 5.5: Local density of states obtained with "Stadium_Pybinding.ipynb". (a) λ/Rq = 1.387 (b) λ/Rq = 0.44
(c) λ/Rq = 0.25.

(a) (b) (c)

Figure 5.6: pdf obtained with "Stadium_Kwant.ipynb". The axes are expressed in [m]. (a) λ/Rq = 0.254 (b)
λ/Rq = 0.25 (c) λ/Rq = 0.2463. The only lead is highlighted in blue.

Figure 5.7: Pdf pattern chosen for the recurrence
curve in Figure 5.8 with Ef/t = 0.2. The axes are
expressed in [m]. The only lead is highlighted in blue.

Figure 5.8: Recurrence pattern obtained by correlat-
ing the simulated scar pdf at different Fermi energies
EF with the pattern from Figure 5.7.
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Figure 5.5 displays the Local Density Of States maps for stadium cavities with three consecutive
λ/Rq ratios, computed with Pybinding. The LDOS at position r = [x, y]T inside the billiard
writes as :

LDOS(r) = 1
σ
√

2π

N∑
n=1
|Ψn(r)|2 exp

(
−1

2

(
En − E

σ

)2)
(5.8)

Where σ = 0.01 is the broadening, |Ψn(r)|2 is the probability of presence of the electron at
position r and En denotes the n-th discrete energy level. The plot in Figure 5.6 is given with
N = 1000.
One observes a regular and symmetric steady state LDOS, where the Fermi wavelength λ clearly
decreases wrt the dimensions of the billiard from (a) to (c). What can be deduced from the
results displayed in Figure 5.5 is that, despite it does not require leads as Kwant, Pybinding is
not suitable for a comparison with the observations made with walking droplets in Section 4.3
because it can only capture cavity eigenmodes without any electron flow. Indeed, as developed
in Appendix B, the framework underlying Pybinding the 2D time-independent Schrödinger
equation, which implies that one completely looses the time-dependency which is critical in
the walking droplet case. It has to be noted that Figure 5.5 displays the LDOS because its
drawbacks are clearer than with the pdf maps (as done with Kwant and explained below) but
the conclusions remain identical in both cases. From this observation, Pybinding has been
dropped out.

On the other hand, Figure 5.6 displays the pdf maps for stadium cavities with three very close
λ/Rq ratios, computed with Kwant, i.e. it displays a contour plot of |Ψn(r)|2 at each position
r. Kwant is especially suited for electronic transport simulation and requires the presence of
leads (source of electrons arriving in the cavity) for this purpose. The width of the lead is
important as it influences the wavefunction modes (i.e. the different wavelengths) that will be
considered in the cavity. [4] Aware of this fact, the width of the leads is chosen to match the
Fermi wavelength λ such that no other multiple of λ are able to interfere (see Table 5.1). As
shown in Figure 5.6, the computed pdf presents scarring effects. However, compared to the
walking droplet case described in Section 4.3 and as shown in Figure 5.8, the scarring pattern in
the stadium cavity is highly sensitive to the ratio λ/Rq, or equivalently to the energy Ef (this is
precisely a hallmark of chaotic behaviour). This sensitivity is also accompanied by a recurrence
curve in Figure 5.8, where the similarity (in the 2D cross-correlation sense) with the arbitrarily
chosen pdf scarring pattern from Figure 5.7 exhibits many peaks at specific fermi energy values
Ef (as also demonstrated in ref. [8]).
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(a) (b)

Figure 5.9: Similarity in two ∞− like shapes. (a) Experimental observation with the walking droplet. (b)
Electron transport simulation with Kwant.

A direct comparison between the walking droplet and the electron behaviours in the stadium
cavity is given in Figure 5.9. Pooling the results obtained in 4.3 with the walking droplet
and the ones obtained by simulation in this section, the walking droplet cannot behave as
a classical particle inside a stadium with dimensions comparable to the Faraday wavelength
(Rq = 4λF ), the droplet is always influenced by the billiard borders through its coupling to
its pilot-wave in the walking regime. Moreover, the observations seem to show similarities
between the quantum scars appearing in electron transport experiments and the walking droplet
long-term behaviour. In both cases, the uniform probability distribution for a classical particle is
lost to yield structured patterns of higher probability of presence, or scars. The clear difference
in robustness between the scarring patterns with walking droplets and electrons is thought to
be related to the difference between the quantum speed vq = ~k/me ≈ 2.6 · 105[m/s] and the
walking droplet maximum ballistic speed [24] vmax = b

√
π
2λFf

Nc

2 ≈ 6[m/s]. Indeed, the number
of bounces of the electron on the borders of the billiard (in a semiclassical view point) scales as
vq/(4Rq) ≈ 6 · 1012[s−1] while it is vmax/(4Rb) ≈ 75[s−1] for the walking droplet. Comparing
(i.e. multiplying) the latter by the Schrödinger timescale 4πm

~k2 and the Faraday period TF gives
1237.8 and 1.875, respectively. It thus seems from the previous quantitative analysis that the
probability of presence of the electron inside the stadium cavity is significantly more sensitive
to imperfections and small variations than the probability of presence of the walking droplet
inside the stadium bath.

Even if the two shapes look similar, it seems inappropriate in this case to interpret the pdf
simulated with Kwant as being related to a continuous displacement of the electron along
this trajectory, contrary to the walking droplet case. However, the focus is made on the
interpretability of the measured pdf. In the walking droplet case, one has a pilot-wave system
where the particle is coupled to its guiding wave, and this time-dependent coupling leads to
another, probabilistic and stationary, wave which represents the chances to find the particle in a
given position of the stadium cavity when trying to measure its position at a given time instant.
This interpretation is non refutable for the electron transport case and is directly related to the
De Broglie theory briefly presented in Chapter 1.
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Chapter 6

Conclusion and perspectives

This work constitutes the first experimental setup on walking droplets developed at UCLouvain.
All the key features have been covered, from the actuation control to the measurement tools.
Some improvements can still be brought to this setup which could lift hurdles for further
experimental investigations, and they are described in Section 6.2.

6.1 Discussion on the obtained results
Let us first remind the central question of this master thesis :

"How does the behaviour of a walking droplet (a.k.a. walker) compare to the classical and
quantum particles’ behaviours inside a Bunimovich stadium cavity?".

From the observations given in Sections 4.3 and 5.2, the walking droplet long-term behaviour
seems to show strong similarities with some specific quantum scars appearing in electron trans-
port experiments. In both cases, the uniform probability distribution for a classical particle
is lost, and one rather observes structured patterns of higher probability of presence, or scars.
The scars have been obtained in the quantum numerical simulations with the Kwant package
only. Importantly the comparison with the walking droplet experiments is not fully valid due to
the necessary presence of leads in the case of Kwant simulations.

The main result of this master thesis is a striking difference in sensitivity between the scarring
pattern of the walking droplet experiment and the scarring pattern of electron’s pdf. It appears
that the walking droplet ∞-like shaped scarring pattern introduced in Section 4.3 is robust
against forcing frequency and amplitude variations, which is not the case at all for electrons
in the quantum numerical simulations. This sensitivity in the quantum case is thought to be
related to the difference in speed between the quantum speed ~k/m and the walking droplet
speed, as discussed at the end of Section 5.2.

We also notice that the walking droplet does not behave as a "classical particle" inside a stadium
with dimensions comparable to the Faraday wavelength (Rq = 4λF ) in the sense that it does not
exhibit the same kind of chaotic dynamics, leading to a uniform probability distribution. This
behaviour may stem from the fact that the droplet is always influenced by the billiard borders
through its coupling to its pilot-wave in the walking regime. However we emphasize that we
only focused our experiments on a relatively small cavity size, and the behaviour in a stadium
billiard of larger dimensions could be investigated to confirm that the walking droplet never
behaves as a classical particle in such geometry.
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We nevertheless inform that these results have been obtained with an experimental setup which
is not optimal, the latter should thus be treated cautiously and may preferably be confirmed by
another laboratory.

6.2 Experimental setup improvement
As this setup is the first version and the objective was to cover all the aspects of the walking
droplet experiment instead of optimizing all the components, there remains some improvements
that can be brought.

First, as this is the reason why the memory parameter Me cannot be rightly measured or
controlled, it seems crucial to enhance to horizontality of the bath. For this purpose, we suggest
the use of millimetric screws to accurately adjust the tilting of the bath. Also, the uniaxial
vibration could be improved by following the suggestions given in ref. [45], i.e. mount the
assembly on a levelling platform, accompanied by heavy blocks to further attenuate the vibration
of the support structure and mount the vibrating bath on an optical table in order to isolate
the table and carriage from any floor vibrations.

Secondly, as explained in Section 4.1.1, there is a delay of around 4 seconds between the
actuation and the corresponding acceleration measurement with the current Labview code
"MyDAQ_memory_control.vi". Removing this delay would allow to use a PI regulator so as to
impose a desired memory parameter Me with a stabilized bath.

Regarding the visualization tools, in addition to the developed Schlieren method described in
Section 4.1.3, it would be preferable to develop another method of quantitative liquid surface
mapping to allow for a cross-validation of both methods. This second method could either
be "laser beam deflection" (as in ref. [53]), the "Brewster angle" or "DNN" based methods
(described in Section 4.1.3). We suggest however to use the "DNN" based method [72] (when
the open-source code is available) as it would allow for using a more regular pattern and thus
increase the droplet tracking accuracy. In top of that, the lighting shown in Figure 4.2 with two
basic lamps makes it difficult to illuminate the bath uniformly. The use of light diffuser would
be more convenient.

Moreover, let us remind that the current setup configuration does not allow for analyzing the
vertical dynamics of the walking droplet. Indeed, as depicted in Figure 4.1, the bath is inserted
in an opaque structure attached to the membrane of the loudspeaker, that prevents observation
of the droplet vertical motion from the side. The solution would be to replace this structure by
another one, with the same shape but made of a transparent material (e.g. plexiglass), also
slightly higher to exceed the loudspeaker’s contour.

Finally, the used launching pad contains imperfections and could be replaced by a 3D printed
version accompanied by a reservoir located under it in order to collect the flowed oil.
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6.3 Perspectives for future research
This work opens many perspectives for further investigation in the comparison between the
quantum world and the walking droplet pilot-wave system. Regarding the experimental side,
a fairer comparison with the presented quantum numerical simulations would be to consider
a new stadium billiard, opened at one or multiple locations by the presence of leads. The
addition of these leads would allow to study an analog of conductance with walking droplets,
where the difference of potential between the input lead and output lead would be obtained
by a difference of liquid depth between the two and the flow would be associated to the time
spent inside the billiard. This experiment would allow to look for an eventual periodic de-
pendence of the transmission on the difference of potential, analog to recurrence observed
in electron transmission vs electron energy. One could also imagine to add the analog of
magnetic field by making the whole system turn around the vertical axis, and observe if the
walking droplet trajectories become curved, until presenting a behaviour similar to the Quantum
Hall Effect [83] where, in the quantum case, the particles tend to follow the borders of the billiard.

The question of whether the walking droplet could behave as a classical particle inside a large
enough billiard could also be investigated by performing various measurements about the
reflections of droplets on walls of different shapes and sizes. If the dependence of the reflections
on the walls is found to be important, it would mean that the walking droplet cannot bounce
elastically as a classical particle except for some counterexamples as a flat symmetric wall. The
influence of the forcing parameters (f0,Γ) on the walking droplet behaviour inside a stadium
billiard may also be further investigated, especially in the high-memory regime, unreachable
with the used setup in its current configuration.

Next, it would have been interesting to take into account the time dependence in the quantum
numerical simulations. Indeed, as the time needed for the droplet to converge to its permanent
scarring trajectory is measurable, it should be possible to compare it with the convergence of
the wavefunction by solving the time-dependent Schrödinger equation inside the stadium billiard.

About the mathematical models of the walking droplet pilot-wave system proposed in the
literature, as discussed at the end of Section 3.1, none of them is currently able to handle
eventual reflections of the liquid surface waves at interfaces (e.g. the borders of the stadium
cavity). It implies that all the current models assume an infinitely wide system for the wave
dynamics, hence cannot provide reliable prediction for the evolution of the walking droplet
inside a small system as the stadium billiard. This absence in the current models is mainly due
to the lack of experimental studies of wave reflections at interfaces and the increased computing
complexity induced by taking account the contribution of reflected waves. According to Loïc
Tadrist and his professional contacts (private conversation), it seems that the boundary condition
for the wave dynamics at the interface is of the Robin type (hence a combination of Dirichlet
and Neumann condition) in the non-viscous case.

Finally, an experimental verification of the developments made by Gilet in [24] with a more
accurate experimental setup seems promising in the perspective of a direct correspondence
between the walking droplet experiment and the quantum analog.
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Appendix A

Vertical oscillations

Figure A.1: Electrical connections
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Appendix A. Vertical oscillations

Figure A.2: Front panel of the developped Labview program.
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Appendix B

Quantum simulations

The general workflow of the Kwant and Pybinding packages starts with model definition. Three
main parts are required to describe a tight-binding model:

• The crystal lattice - The specification of the primitive lattice vectors and the configura-
tion of the unit cell (atoms, orbitals and spins), as shown in Figure B.2.

• System geometry - The model system can be infinite through the use of translational
symmetry or it can be finite by specifying a shape. The two approaches can also be
composed to create periodic systems with intricate structural patterns. The structure can
be controlled up to fine details, e.g. to form specific edge types as well as various defects.

• Fields - Functions can be applied to the onsite and hopping energies of the model system
to simulate external fields or various effects.

Once the model description is complete, Pybinding or Kwant will build the tight-binding Hamil-
tonian matrix. The next step is to apply computations to the matrix to obtain the values of the
desired quantum properties. Different computation methods as the Kernel polynomial or Exact
diagonalization exist.

B.1 Simplification of the lattice
The first objective will be to choose a geometry for the lattice which is a trade-off between
simple and close to reality. The organization of atoms in a AlxGa1−xAs looks like :

Figure B.1: Organization of the atoms in AlxGa1−xAs.
(taken from Google image)

Figure B.2: Schematic of a square lattice where the
atoms are represented by blue balls. The lattice pa-
rameter is a and each atom position is given by a
vector ~Rn where n is the atom label running over the
couples (i, j).
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In order to simplify the problem in a simulation point of view, the structure in Figure B.1 in
approximated by a square lattice as shown in Figure B.2 where the nuclei of each atom are
considered at a fixed position.

B.2 Simplification of the Schrödinger equation
To analyze from which precise equation Kwant and Pybinding start from, let us give the general
formulation of the Schrödinger equation :

Hψ(~r1, . . . , ~rn, t) = −i~ ∂
∂t
ψ(~r1, . . . , ~rn, t) (B.1)

Where H is the Hamiltonian operator expressed as :

H =
n∑
i=1

~2

2mi

∆~ri
+ V (~r1, . . . , ~rn, t) +

�
�
�

�
�
�

��n∑
i=1

∑
j>i

e2

4πε0rij︸ ︷︷ ︸
Electronic repulsion

(B.2)

With ∆~ri
being the Laplacian operator applied in direction ~ri and V (~r1, . . . , ~rn, t) takes into

account the attraction of the nuclei as well as any eventual added potential. One notices the
neglecting of the mutual repulsion between electrons (see Tight-binding approximation below).
Reducing the problem to 2D and in a cartesian frame yields :

H =
n∑
i=1

~2

2mi

(
∂2

∂x2
i

+ ∂2

∂y2
i

)
+ V (~r1, . . . , ~rn, t) (B.3)

Since the transport of electrons in a solid is studied, the nuclei of the atoms can be considered
to be fixed in space. The nuclei are therefore only taken into account in the Hamiltonian to
determine the potential V .

Adding the assumption that the solution should be time invariant ( ∂∂tψ(~r1, . . . , ~rn, t) = 0), i.e. a
stationary equilibrium is quickly established in the dynamical system, the equation simplifies to
: (

n∑
i=1

~2

2mi

(
∂2

∂x2
i

+ ∂2

∂y2
i

)
+ V (~r1, . . . , ~rm)

)
Φ(~r1, . . . , ~rn) = EΦ(~r1, . . . , ~rn) (B.4)

Introducing now the Tight-binding approximation [86] which is reasonable to describe electronic
transport in nanostructures, we remind its two main hypoyheses :

1. Only one kind of orbital is implicated in electron transport.

2. We neglect all the interactions between electrons. We can therefore consider each one as
being alone in the periodic lattice.

From these latter, the dependence on the position of the nuclei vanishes and leads to a single
electron problem depending only on its position (x,y) in the 2D space :(

~2

2m∗

(
∂2

∂x2 + ∂2

∂y2

)
+ V (x, y)

)
Φ(x, y) = EΦ(x, y) (B.5)

On which some supplementary simplifications as the Linear combination of atomic orbitals and
on-site and hopping parameters are described in [86]. The remaining equation will finally be
discretized in the two space dimensions (x,y) in order to be numerically solved.
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