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“Goals transform a random walk into a chase”

Mihaly Csikszentmihalyi






Abstract

Computational imaging has revolutionized our capabilities to sense the
environment, enabling a wide range of applications in domains like
medical, biological, or radio-astronomical imaging. This thesis broad-
ens the scope of the computational imaging framework in two main
directions.

First, the principle of compressive imaging—i.e., capturing the image
information with few linear projections data—is applied to two inter-
ferometric imaging applications, namely multicore fiber lensless imaging
and radio-interferometry. In both cases, it is shown that compressive
imaging is possible with random projections applied at the level of
the interfering elements, resulting in a linear sensing model involving
Fourier subsampling and rank-one projections. In addition to the analy-
sis of their computational complexities, the sensing models are accom-
panied by uniform recovery guarantees highlighting their sample com-
plexities—the number of interfering elements and number of measure-
ments required for image recovery. The theoretical sample complexities
are confirmed numerically, and also experimentally for multicore fiber
imaging.

Second, contributions are brought to the field of diffraction tomog-
raphy, proposing a combination of an implicit neural representation—a
continuous image representation by a neural network—and a nonlin-
ear (multiple-scattering) sensing model. Significant efforts are made in
a review of the different ways to model electromagnetic wave diffrac-
tion through inhomogeneous media, leveraging first-order optimization
methods to solve the subsequent linear system of equations. The recon-
struction of the 3-D image through the weights of an implicit neural
representation instead of discrete voxels is proposed for this nonlinear
sensing model, demonstrating the benefit of (i) the nonlinearity over
linear approximations of the model, and (ii) the continuous representa-
tion for handling rotations of the object. The drawbacks of the approach
are highlighted and improvements necessary for experimental use are
discussed.
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Introduction

IMAGES ARE EVERYWHERE. Imaging is one of the main tools used
by humans to record, share, display, and quantify information. More
than ever today, we are drowned with dozens of images and videos
every day on social media and journals. Watching professional sport,
films and series, or online videos is one of the main hobbies. Cameras
are placed in the streets, highways, houses, supermarkets and many
more for security and statistical analysis. Also for medical diagnosis,
radiography, echography, Magnetic Resonance Imaging (MRI) and ul-
trasound imaging for mammography all produce images that are an-
alyzed either by professionals or even automatically to select the best
recovery procedure for each patient. Furthermore, radio-astronomical
imaging is key to deepen our understanding of the universe.

However, some imaging modalities cannot directly sense image-
like data like a conventional camera. For instance, the target finest
angular resolutions in radio-interferometry require to acquire electro-
magnetic signals at antennas spaced by thousands of kilometers. On
the other hand, the indirect nature of MRI data collection, involving
frequency and phase encoding, cannot be bypassed to directly sense an
image.

In this thesis, we will cover imaging applications whose measure-
ments contain indirect information about the image of interest, and for
which an inverse problem must be solved in order to estimate this im-
age. We will present photonic imaging use-cases but the conclusions
are not specific, they can be applied to other modalities like electron
imaging [Rob+23] and gravitational imaging [Nic95]. Some contribu-
tions are the fruit of scientific collaborations, I will use by default the
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1 | Introduction

pronoun "We" to mention our shared contributions, and explain some
scientific questions that arose from this PhD project.

1.1 Computational imaging: applications and challenges

This section will gradually explain the key concepts of COMPUTA-
TIONAL IMAGING, starting from the basics of conventional cameras, up
to the open challenges for the field. This introduction remains mainly
textual to take the reader by hand. Though, the key mathematical vari-
ables that are the core of any computational imaging application will
be gently introduced to build up the intuition.

All imaging is computational nowadays.

The principles of conventional cameras have been inspired by human
visual system. In Fig. 1.1.(a), like in the human eye, a transparent
curved surface named lens maps a specific plane of the field-of-view
onto an internal small plane that senses the incoming light. The lens
is the key component. Thanks to it, the sensed information generally
coined y directly estimates the environment of interest x.

Most of smartphone users may have noticed phones now have mul-
tiple cameras. The purpose is not to capture multiple snapshots of the
scene. The information of the images obtained via each single camera
is combined (through computations) to enhance the resulting image.
This is reminiscent of how human eyes work with the brain to combine
their information. This is a first example of CI. Slightly less noticeable,
a few moments after a photo has been taken, the image is corrected on-
the-fly to deblur and improve contrast. The corrections made to our
captured images are not random. They are specifically chosen to map
the freshly acquired image to a distribution of more nice-looking images.
These corrections require computations in order to modify each pixel
value. Actually, automatic focusing—adjusting the focal distance of the
camera lens to a target plane to get a sharp image—is another example
of CL.

More formally, the term COMPUTATIONAL IMAGING stands for any
context where the link between the target image and related measure-
ments differs from identity. As depicted in Fig. 1.1.(b), the measure-
ments y are related to the image x through a forward operator A. In most
common applications, the imperfection of the sensing device and mod-
eling of A are represented by an additive noise term n. The underlying

2 |



Computational imaging: applications and challenges | 1.1

Fig. 1.1 (a) Conventional imaging using a lens. (b) Example of a computational imag-
ing application: deblurring.

mathematical model writes

y=Ax+n. (1.1)

Obviously, the image of interest is x. But in (1.1), x is no longer directly
accessible. The task of computing an estimate x of x from the knowledge
of y is called an INVERSE PROBLEM because (1.1) needs to be inverted
in some way.

CI has numerous applications. To cite a few: in natural imaging:
denoising, motion deblurring, superresolution, inpainting. In biomed-
ical imaging: tomography, MRI, endoscopy, microscopy; and radio-
astronomical imaging is another example. The differences between them
lie in the forward operator A. The challenges are the following.

Forward model

Each CI modality requires an appropriate model for A. In the majority
of currently well-studied cases, a linear model such as (1.1) is sufficient
to describe the sensing. This will be our case in Chap. 3-4. In general,
however, the relationship between y and x can be nonlinear. Chap. 5-6
will be an example of a nonlinear model. At first glance, a linear for-
ward model seems gentle and easy to analyze. It only involves a linear
forward operator A—a matrix. But A can take many forms. The prob-
lem is that it usually contains only partial information about the image of
interest x. We call this an ill-posed inverse problem; because the inverse
of A does not exist.
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Inverse problem and recovery program

Since A~! does not exist, the image cannot be computed as simply as
¥ = A" ly. And even if the inverse does exist, it generally amplifies
the noise. The solution to the inverse problem, i.e., the computation of
a sound image candidate, is generally obtained by minimising a cost
(or loss) function which implies two terms: (i) a data fidelity term—
computing the distance between the acquired measurement and a mea-
surement candidate, and (ii) a reqularization term—forcing the candi-
date to satisfy some structure known a priori. The choice of the loss
function is challenging, as is the scaling factor between data fidelity
and regularization.

The practical way to minimise the loss function is the reconstruction
(or recovery) algorithm. While algorithms can take many forms, the phi-
losophy is always the same:

1. Start with a first candidate.
2. Compute the error, i.e., the value of the loss function.

3. Update the candidate in a direction that reduces the value of the
loss function.

4. Iterate between steps 2. and 3. until a maximum number of itera-
tions is reached or a tolerance criterion is satisfied. Then stop.

There is a large community of researchers in the field of optimization
who categorize functions to be minimized and provide appropriate al-
gorithms to solve these minimization problems. In this thesis, the re-
sults from this community are used as a powerful tool to compute the
reconstruction.

Recovery guarantees

In CI applications, the ground truth image is generally unknown. For
hobby photography or any situation where only a qualitatively satis-
factory reconstruction is required, a nice rendering is sufficient. How-
ever, for biomedical diagnosis, chemical analysis, and radio-astronomy,
a quantitatively accurate reconstruction is necessary. Obviously, the re-
construction cannot be compared to the ground truth to evaluate its
quality. Nevertheless, if the forward operator A preserves a sufficient
amount of information of the image of interest, it is possible to show
rigorously in some simple cases (for now) that mimizing a distance in
the measurement space directly relates to a minimization of a distance

4 |
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in the image space. These proofs involve demonstrating an isometry
property between the two spaces. These works show that the estima-
tion error can be decreased by putting effort into minimizing the data-
fidelity term. While a bunch of recovery guarantees have been given
mainly for toy inverse problems, it has been numerically and exper-
imentally observed that the reconstructions are also accurate in more
realistic cases.

A minimal number of measurements

There are two main reasons to aim for a minimal number of measure-
ments, a.k.a. sample complexity.

1. Reduced memory usage Some modalities generate a large amount
of data on a daily basis. For example, the Square Kilometer Array
for radio-astronomy will collect about 5 terabits per second of in-
terferometric data [BNB15].

2. Speed of acquisition Sometimes multiple snapshots are needed
to collect enough information about the image of interest. This
is done by tuning the acquisition parameters. This process can
be slow, and minimizing the sample complexity can alleviate this
bottleneck.

To reduce the memory footprint, post-sensing compression may be suf-
ficient. In other words, the classical acquisition process can be per-
formed, and the eventually huge amount of data can be compressed af-
ter acquisition. Unfortunately, this late compression does not speed up
the acquisition process. There is a field of research investigating tech-
niques to compress during acquisition. It is called compressive imaging
(compressive sensing in a broader sense) [AH21]. Compressive imaging
will be at the core of the contributions of Chap. 3-4

Imaging fast

If real-time sensing is a necessary constraint for the imaging modality,
we see three areas that need to be optimized to speed up the sensing: (i)
Hardware optimization, i.e., designing the most efficient devices to per-
form the target sensing. These considerations are beyond the scope
of this thesis. (ii) Lower sample complexity, as discussed in the previ-
ous paragraph. (iii) Fast recovery program. A good recovery program
must not only produce a reliable estimate of the image. It must also
produce this estimate within the time constraints. Since reconstruction

()
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algorithms are iterative, speed is achieved both by speeding up each
iteration and by minimizing the number of iterations.

The application of the forward operator A within each iteration gen-
erally appears to be the most costly operation in terms of computational
load. The search for an efficient implementation of A is therefore criti-
cal. It usually involves algorithmic tricks such as the Fast Fourier Trans-
form [CT65], which appears many times in this thesis.

With convergence rates provided by the optimization community
[Nes18], the reconstruction algorithms are designed with respect to the
features of the loss function to be minimized. However, they are data
agnostic. To reduce the number of iterations, (deep) learning techniques—
using data to improve the recovery performance—have raised a lot of
interest in the last decade [Luc+18]. Learning techniques are comple-
mentary to most of our contributions, but are not really covered in this
thesis.

1.2 Interferometry and Rank-One Projections

Interferometry is pivotal in several cutting-edge imaging techniques.
In multicore fiber lensless imaging, the interference of the light emit-
ted by multiple cores induces an illumination which is a combina-
tion of fringes patterns called speckle. This interferometric illumina-
tion method enables high-resolution visualization [Leb+23]. Similarly,
in atmospheric optical turbulence forecasting, interferometry helps pre-
dicting and mitigating the effects of turbulence on optical systems,
thereby increasing the accuracy and reliability of atmospheric obser-
vations [Qua+23]. In addition, radio-interferometry uses the principles
of interferometry to synthesize high-resolution images of astronomical
objects by correlating signals received at different telescopes, effectively
overcoming the limitations of single-dish telescopes [Wia+09].

Strongly related to the famous double-slit experiment, two elements
interfering yield a fringe pattern. Interferometric imaging is tanta-
mount to obtain a projection of an image of interest with this fringe,
which is a sinewave whose wavelength depends on the distance be-
tween these elements. If multiple elements interfere, this results in
a linear combination of sinewaves whose wavelengths are inversely
proportional to the pairwise distances between the elements. Conse-
quently, interferometric imaging amounts to accessing Fourier samples
on the set of differences of the element’s positions. This key observation
allows for the smart design of antenna or core arrays, optimizing the

6 |
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spatial configuration to effectively capture the necessary information.
By strategically placing antennas or fibers based on the difference-set
approach, one can maximize the coverage and resolution of the sam-
pled Fourier space, leading to high-fidelity reconstructions from lim-
ited data.

A key aspect of Chap. 3 and 4 is the exploration of the correspon-
dence between computing the square modulus of a sketch of the in-
terferometric measurement vector and Symmetric Rank-One Projections
(SROPs) of the outer product of this vector—coined interferometric ma-
trix—with the same sketching vector. By analyzing the outer product
and its projections, we gain insight into the structure of the measure-
ments and develop more robust data reconstruction methods. This
correspondence enhances both theoretical understanding and practical
applications, improving the efficiency and accuracy of interferometric
imaging systems. Leveraging random SROPs enables the creation of a
compressive imaging framework and the design of algorithms that are
computationally efficient and capable of handling large data sets.

In summary, Chap. 3-4 aims to bridge the gap between interferom-
etry and rank-one projections, providing a comprehensive framework
for understanding and using these concepts in various imaging modal-
ities. Through detailed analysis and practical applications, we aim to
advance the state of the art in interferometric imaging.

1.3 Diffraction Tomography

DIFFRACTION TOMOGRAPHY is a sophisticated imaging technique used
to reconstruct the internal structure of an object by analyzing how
waves, such as X-rays, sound waves, or electromagnetic waves, scat-
ter as they pass through the object. Unlike conventional tomography,
which assumes straight-line propagation of waves, diffraction tomog-
raphy accounts for the wave-like nature of signals, incorporating phe-
nomena such as diffraction and interference. This method involves col-
lecting data from multiple angles and using mathematical algorithms
to solve the inverse problem of reconstructing the object’s properties.
By exploiting the interactions of waves with the internal features of the
object, diffraction tomography is particularly valuable in fields such as
medical imaging, material science, and nondestructive testing.

In medical imaging, diffraction tomography is particularly useful in

|7
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optical coherence tomography (OCT) [Hua+91], which allows detailed vi-
sualization of biological tissues. This application is critical to the diag-
nosis of retinal disease and other conditions, providing a non-invasive
means of obtaining high-resolution images of internal structures. In
materials science, diffraction tomography is used to examine the in-
ternal structure of composite materials, detecting defects or inhomo-
geneities at the microscopic level. This ensures the integrity and qual-
ity of materials, which is essential for the development and use of
advanced composite materials. In addition, diffraction tomography
is used in nondestructive testing to inspect critical components such as
aerospace parts, identifying flaws or damage without causing damage
to the objects being analyzed. This capability is essential for maintain-
ing safety and reliability in critical industries where understanding the
internal state of a component can prevent catastrophic failure.

These applications highlight the versatility and precision of diffrac-
tion tomography in capturing intricate internal details across various
domains. The ability to account for wave diffraction and interference
allows for more accurate and detailed imaging, surpassing the capa-
bilities of traditional tomographic methods. In Chap. 5-6, we make
some contributions to the art of diffraction tomography by combining
recently stabilized numerical modeling techniques with a continuous
representation of the object to be imaged—an Implicit Neural Represen-
tation, introduced in Sec. 1.4.

1.4 Implicit Neural Representations

IMPLICIT NEURAL REPRESENTATIONS (INRs), sometimes called “NeRFs”
for their historical appearance in view synthesis, are a transformative
approach in the realm of data representation, leveraging neural net-
works to encode continuous spatial data [Mil+20; Sit+20; Yuc+22]. This
technique offers a compact and flexible means of representing complex
structures, enabling advances in high-resolution image reconstruction,
3-D shape modeling, and efficient signal processing.

Unlike voxel-based techniques, which can be limited by their dis-
crete nature and large memory requirements, INRs allow precise re-
construction of complex structures with significantly fewer parameters.
This efficiency enables the capture of fine details and smooth variations
within objects, improving the fidelity of reconstructed images. Another
notable advantage of INRs is their ability to naturally handle contin-

8 |
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uous transformations, such as object rotations or spatial derivatives.
Consequently, INRs are particularly adept at solving partial differen-
tial equations (PDEs), such as the Helmholtz equation’.

Importantly, INRs are not just black-box tools for solving inverse
problems; they are sophisticated representations tailored for signal pro-
cessing. Unlike traditional deep learning approaches that rely on su-
pervised learning with ground-truth input-output pairs—often scarce
in emerging applications such as diffraction tomography-INRs can be
trained in a self-supervised manner.

By leveraging the flexibility and precision of INRs, researchers and
practitioners can push the boundaries of what is possible in fields rang-
ing from medical imaging to computational physics, ushering in a new
era of high-fidelity data representation and analysis. One contribution
of this work, described in Chap. 6, is to exploit the use of an INR for
diffraction tomography.

1.5 OQutline and contributions

This thesis brings contributions to the field of computational imaging
in three different applications depicted in Fig. 1.2. Namely, we pro-
pose advances in MultiCore Fiber Lensless Imaging in Chap. 3, Radio-
Interferometry in Chap. 4, and Diffraction Tomography in Chap. 5-6. The
organization of those contributions into the present manuscript is ex-
plained below.

Chapter 1: Introduction.

This chapter is the one the reader is currently looking at. It introduced
the context of computational imaging, with an emphasis on three as-
pects covered in this thesis: interferometry, diffraction tomography, and
implicit neural representations.

Chapter 2: Flavors of Computational Imaging.

Chap. 2 provides a more in-depth description of the concepts liter-
ally introduced in this chapter. This preliminary section introduces the
mathematics of computational imaging.

IThis is not what we do in this thesis.
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Chap. 3
MultiCore Fiber Lensless Imaging

Optics Single pixel detection

Chap. 4
Radio-Interferometry

Wavefront

shaper X !

(SLM)

Sky intensity distribution

4 )

Imaged
(biological)
sample

Fluorescence signal

Highlighted point

Chap. 5 & 6
Diffraction tomography

Camera images

Diffracted field U (r)

Antenna  ees
measurements

Scattering
Incident field potential

Fig. 1.2 The three computational imaging applications covered in this thesis. Chap. 3
studies the compressive imaging of a 2-D fluorescent biological sample with a lensless
multicore fiber. Chap. 4 images the light intensity distribution of a small angular portion
of the sky by radio-interferometry. Chap. 5-6 indirectly observe a 3-D distribution of
refractive index by diffraction tomography.

It begins by explaining what is image representation—i.e., how we
can encode the information contained in an image, then how indirect
observations of a computational imaging modality can be mathemati-
cally linked to that image representation by integrating the physics of
acquisition into a forward operator. The unwanted random variations
that occur in the measurement signal—the noise—are briefly described
as well.

After formulating the forward sensing model, Chap. 2 explains how
to formulate an inverse problem to obtain an estimate of the image of
interest from indirect and noisy measurements. It is emphasized that
solving an inverse problem is tantamount to minimizing a loss function,
and thus requires the use of optimization techniques and recovery algo-
rithms.

Next, the two types of recovery guarantees—nonuniform and uniform—
are presented. And the chapter concludes with a listing of the various
complexities used to assess the efficiency of a computational imaging
modality.

10 |
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Chapter 3: Rank-One Compression of Interferometric Sensing

There, we provide several contributions to the modeling, understand-
ing, and efficiency of MultiCore Fiber Lensless Imaging (MCFLI).

The story begins by leveraging a speckle illumination model to
highlight the interferometric nature of the MCF device. A sensing
model closer from the physical principle of MCFLI boils down from
that observation. It appears that the previously considered illumina-
tion modes, but also the arrangement design of the cores, find clear
explanations with an interferometric point of view.

Uniform image recovery guarantees are provided based on a couple
of realistic assumptions, and are validated by numerical phase transi-
tion diagrams. The provable theoretical setting is even extended to the
recovery of a more realistic image in a real experimental setup.

Chapter 4: Compressive Radio-Interferometry.

The contributions of Chap. 3 are transfered and extended to another
interferometric imaging modality: Radio-Interferometry.

The usual imaging principle, based on the covariance matrix of the
measurement vector and intrinsically related to a Fourier subsampling
of the image of interest, is first properly re-explained. The leap for-
ward of this chapter with respect to the literature is to emphasize that
computing a random projection of the measurement vector—a.k.a. ran-
dom beamforming—before computing its covariance, provides a random
rank-one projection of the covariance matrix. This opens the door to
reusing some results of Chap. 3 to do compressive radio-interferometric
imaging.

The profound novelty of the underlying compression scheme is that
it reduces all computational costs: (i) the computation during acquisi-
tion, (ii) the number of measurements, and (iii) the computation of the
forward imaging model.

Similarly to the previous chapter, uniform recovery guarantees are
provided and numerically validated with phase transition diagrams. Fi-
nally, some numerical analysis is proposed in a state-of-the-art realistic
simulation environment developed by an internationally renowned re-
search team.

Chapter 5: Diffraction Through Inhomogeneous Media

The explanation of the setting of Diffraction Tomography has been di-
vided into two chapters due to the large number of concepts to be cov-

| 11
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ered and the coexistence of two related inverse problems.

Chap. 5 focuses on an accurate discrete model for the diffraction
of electromagnetic illumination through an inhomogeneous 3-D refrac-
tive index distribution. First, we provide a brief reminder of the simpli-
fying assumptions behind the Helmholtz equation and its integral form
specifically designed for inhomogeneous media—the Lippmann-Schwinger
equation. This exact nonlinear equation is compared with other popular
scattering models which are explained to be approximations. Particu-
lar emphasis is made on the linearized model—the First-Born Approxi-
mation—for its associated Fourier Diffraction Theorem, which provides a
clear view of the information acquired in a tomographic imaging con-
text.

Next, an accurate and efficient discretization of the Lippmann-
Schwinger model is provided. The subsequent linear system to be solved
is deeply analyzed in the lens of First-Order Optimization Methods. It is
numerically demonstrated that the ill-conditioning of the linear system
is influenced by the contrast of the imaged refractive index distribution.

Chapter 6: Diffraction Tomography with Implicit Neural Represen-
tations

This chapter builds on the results of Chap. 5 to establish a complete
diffraction tomography setup.

The first particularity of Chap. 6 is that it considers a continuous
representation of the 3-D image by an implicit neural representation. This
representation brings many benefits to the modality: (i) it provides a
reduced parameterization of the image, (ii) it provides easy handling
of continuous 3-D rotations of the image, and (iii) it enables the use
of an automatic image reconstruction algorithm leveraging automatic
differentiation and deep weight backpropagation.

The second peculiarity is that the sensing models formalized for op-
tical and intensity diffraction tomography are both nonlinear sensing models,
letting us dive into the unknown in terms of inverse problem theory.
One role of this chapter is to show, by means of numerical simulations,
that the nonlinearity of the sensing model improves the image recovery
compared to its linear approximation related to the First-Born approxi-
mation discussed in the previous section.

12 |
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Contribution Graph and Features of Computational Imaging

Fig. 1.3 shows a graph of the contributions made in this thesis. The con-
tributions are divided into the aspects already known in the literature
and re-explained (in blue), and the novel results (in red). It is shown
that this thesis is divided into two main parts:

m Chap. 3-4 covering interferometric imaging and rank-one projec-
tions.

m Chap. 5-6 discussing diffraction tomography with implicit neural

representations.
Chap. 3: Rank-One Compression Chap. 5: Diffraction Through

of Interferometric Sensing Inhomogeneous Media
o Raster-scanning and speckle illumination modes © Reviev.v of multiple—scaifterir}g models
e Low-rank matrix reconstruction e The First-Born approximation and

the Fourier diffraction theorem

o Interferometric analysis of MCFLI o Bridging Neumann series and Gradient Descent
o Efficient SROP debiasing o Contrast-dependent convergence rate
e Rank-one projected interferometric sensing

® Recovery guarantess
o Simplified calibration

|

Chap. 4: Compressive Radio-Interferometry

Chap. 6: Diffraction Tomography with
Implicit Neural Representations

o Measurements and sample covariance matrix

e Uncompressed model and baseline-dependent
averaging

e Recovery algortihms

e Architecture and training of INRs

o Sensing models for Optical and Intensity
Diffraction Tomography

e Random beamforming

e Bernouilli Modulations of ROPs

e Recovery guarantees

o Numerical proof-of-concept Legend: Explanation Novelty

o Multiple-scattering with INR

Fig. 1.3 Contribution graph of the thesis. Arrows indicate the prerequisite relations
between chapters.

Fig. 1.4 presents 5 features of CI introduced in the preliminary
Chap. 2. We report the elements covered in each contributing chapter
of this thesis.

List of Publications

Hereafter is the list of scientific publications that have been submitted
in the context of this thesis, either peer-reviewed or under review. Sev-
eral of them inspired significant parts of this manuscript, which are ex-
plicitly mentioned at the beginning of the relevant chapters. The pub-
lications are grouped according to the part to which they refer and,
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Computational imaging

Low-complexity model

Sparsity
Deep-based

Random
Linear, nonlinear

Uniform
Non uniform

£1/€> fidelity
£1, TV, positivity

regularization

Greedy
Proximal
Gradient (PGM)

Chap. 3

Chap. 6

Random
Linear

Random

5 nonlinear
Linear

£1/€> fidelity
4, TV,
positivity,

Fig. 1.4 Features of Computational Imaging as described in Chap. 2 and with high-
lights on the aspects covered in each chapter of this thesis. A low-complexity model is a
compressed image representation in a transformed domain.

within each part, are listed in order of submission. We also mention
the type of publication: journal paper (J), conference paper (C), poster
(P), or extended abstract (A), i.e., a short version of a conference paper
(usually 2 pages).

Related to Chap. 3 - MultiCore Fiber Imaging:

(A) Olivier Leblanc, Matthias Hofer, Siddharth Sivankutty, Hervé
Rigneault, and Laurent Jacques, "An Interferometric view of Speckle
Imaging", Workshop on Low-Rank Models and Applications at
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(P) Olivier Leblanc, Matthias Hofer, Siddharth Sivankutty, Hervé
Rigneault, and Laurent Jacques, "An Interferometric view of Speckle
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land), March 2023.

(J) Olivier Leblanc, Matthias Hofer, Siddharth Sivankutty, Hervé
Rigneault, and Laurent Jacques, "Interferometric Lensless Imaging:
Rank-one Projections of Image Frequencies with Speckle Illuminations",
IEEE Transactions on Computational Imaging (Vol. 10, pp. 208-
222), February 2024, cited as [Leb+23].
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Related to Chap. 4 - Compressive Radio-Interferometry:

(J) Olivier Leblanc, Yves Wiaux, and Laurent Jacques, "Compressive
radio-interferometric sensing with random beamforming as rank-one
signal covariance projections.”, Submitted to IEEE TCI [LW]24].

(J) Olivier Leblanc, Taylor Chu, Yves Wiaux, and Laurent Jacques,
"Compressive radio-interferometric imaging: Rank-One Compression
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Related to Chap. 5-6 - Diffraction Tomography:
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Continuous Lippmann-Schwinger Intensity diffraction tomography",
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During this thesis, I also contributed to the following articles in the
fields of Computational Imaging and Convex Optimization:
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"Computational fluorescence imaging with multi-core fiber bundles-
Towards high-speed imaging through bare optical fibers", European
Conference on Lasers and Electro-Optics at Munich (Germany),
June 2023.

(J) Murielle Kirkove, Yuchen Zhao, Olivier Leblanc, Laurent Jacques,
and Marc Georges, "ADMM-inspired image reconstruction for Tera-
hertz off-axis digital holography", Journal of the Optical Society of
America A (Vol. 41, Issue 3, pp. Al-Al4), December 2023, cited
hereafter as [Kir+24].
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and Eneko Urufuela, "PyProximal - scalable convex optimization in
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m https://github.com/olivierleblanc/ROPL

Related to Chap. 4 - Compressive Radio-Interferometry:

m https:/ /github.com/olivierleblanc/RAPHA.
m https://github.com/olivierleblanc/uSARA.
m https://github.com/olivierleblanc/AIRL

Related to Chap. 5-6 - Diffraction Tomography:

m https:/ /github.com/olivierleblanc/colsi
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https://github.com/olivierleblanc/RAPHA
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https://github.com/olivierleblanc/AIRI
https://github.com/olivierleblanc/colsi
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R, C
i=y—1

Notations

Scalar (lowercase)
Vector (boldfont lowercase).
Matrix (boldfont uppercase).

A scalar-to-scalar function is applied componentwise
to a vector: (f(u)); = f(u;).

Proportionally greater (smaller). a 2 b < a > Cb for
any constant C > 0 (and similarly for ).

Half-open interval including 0 but excluding 1.

Unitbox of p dimensions. [0,1]P := [0,1] x ... x [0,1],
p times.

1, ifk=Kk.
Kronecker delta. J; p» =

0, otherwise.

1, ifj=i
Standard basis vector. (e;); =
0, elsewhere.

Identity operator or n x n identity matrix (I, when
ambiguous).
) ) 0, ifxeS.
Indicator function. tg(x) :=
400,  otherwise.

Projection on the set S. ITs(x) := argmin, ¢ ||x —
Ll||2.

Set of all real (resp. complex) numbers.

Imaginary number.



1 | Notations

R{a}, S{a} Real and imaginary parts of a € C.
uR

it = Augmented real version # € R*" of a complex vector
ur ucC

Operations

u' Transpose.

u- Conjuguate transpose.

ut Pseudo-inverse. For a matrix U € CM*N;

+ (u*u)-tu*, fM<N
u':= .
u*(uu*)-!, otherwise
u - v = Elementwise product.

* Convolution.
X Vector /Cross product.
o Composition of operators.
unv --- UV
® Kronecker product. U ® V =
UV - UpV
/k/N Modulo. /k/n :=k mod N
[ Ceil.
detU Determinant of the matrix U.
tru Trace of the matrix U. tr U :=Y; Uj;.

diag(U) € C"

diag(u) = D, €

Cn Xn
Uy
uy

Extracts the diagonal of U. diag(U); =

Diagonal matrix s.t. diag(u);; = u;.

Diagonalized version of U. U4 = diag(diag U).

Hollow version of U. Uy, := U — Uy.
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d-dimensional Fourier transform of g evaluated at yx.
§(x) = Jrag(s)e % =ds.
Partial derivative with respect to variable x.

Nabla operator. In 3-D Cartesian coordinates, V :=
(axz ayr aZ)

p-norm (or {,-norm) of u. |ju|, := (ZnN:1 |un|P)1/p,
for p > 1. With ||ul| := ||ul|2-

{p-pseudonorm counting the number of nonzero en-
tries of u. ||ullo = |{i : u; # 0}| = |suppu|.

Infinite norm. ||u||cc = max; u;.
Frobenius norm. ||U||Z := Yik U |

Nuclear norm. ||U||, := tr VU*U.

Operator norm. ||U|| := sup { [Uel . 5 € dom uj.

[[o]]
Total Variation norm. In 1-D, ||u||ty := Y7 Juir —
Mi‘.

Sub-exponential (p = 1) and sub-Gaussian (p =
2) norms of a random variable X. | X][y,
sup g~ /P (E[X]7)"/1.

q>1

Scalar product between u and v with respect to one
of the norms defined above.

Frobenius scalar product. (U, V) = tr U*V.

Empty set.
Sets of natural numbers and integers, respectively.

{sq}(?:1 = {s1,...,50}

Cardinality of a finite set S.
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A—-B

[N]
[N1, N2|

Ag

Xk
HQ

(Ly,Ly,L2)
(N, Ny, Nz)

(Ly,LyLz) !
(Nx,Ny,N:)

Minkowski difference of two sets A and B. A — B =
{a—b:ae€ Abe B}

Indices. [N] = {1,...,N}.

Indices. [Ny, N2] = {N1, N1 +1,...,No} with N; <
N>.

Restriction of the matrix A € C"*" to the columns
indexed in § C [n].

All K-sparse signals. Xx := {u : |ju|p < K}.

Hermitian matrices in C2*Q, i.e., square matrices M
satisfying M = M".
Regular 3-D grid. g((Nx/Nerz

o (ilx JLy kL.\ _ (Le Ly L, —
ry = (Nx,Ny’Nz) (%,4,%), where n = i+

iNe +kN2, i € [N, j € [Ny], k € [N:]. Gk and

(LoLy)
GineNy)

Lx,Ly,Lz)) := {ro,...,rN_1} with

are the analog 1-D and 2-D versions.

Ly,Ly,Lz) ! 1 113
NX,I\}I/y,NZ) C 23]
with resolution (N, Ny, N;) along the (x,y,z) axes

Normalized 3-D regular grid Q((

. (LeLyl) " / .
respectively. g(Nx/I\ZZ//NZ) {ry, ..., ¥N_1}, with
rn = Lr) using largest spatial dimension L :=

!
max(Ly, Ly, L;). Qh/ and G ((i,'i’ﬁ,yy)) are the 1-D and 2-D

analog versions.

Random distributions

p(X)
p(X]Y)

Probability of the event X.

Probability of the event X knowing that the event Y
has occured.

The random variable or vector X is randomly dis-
tributed according to the distribution P.

The random variables or vectors {X;}Y , are indepen-
dent and identically distributed according to the distri-
bution P.

Expectation with respect to the random vector «.
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Uniform distribution on a set A.

Real multivariate normal distribution with mean u
and covariance matrix I (written o2 in 1-D).

Complex multivariate normal distribution with mean
u and covariance matrix £ (written o2 in 1-D).






Conventions

The “hat” will be reserved for designating the Fourier transform of a
signal (e.g., f := F(f)) and the “tilda” will be used for an estimate com-
puted as the solution of an inverse problem (e.g., ¥ = arg min, f(x) for
a function f to be minimized), or the biased and noisy measurements in
Chap. 4. The k-th iterate of the variable x in an optimization algorithm
will be denoted x),

For the algorithms, a code-like convention will be used, as shown in
Table 1.2.

Table 1.2 Convention for the algorithms

Operation Notation example

Assignment a=1

Increment b+=1
Multiplication c*x=10







Preliminaries: Flavors of
Computational Imaging

This chapter provides a self-contained introduction to the concept of
COMPUTATIONAL IMAGING (CI). Throughout the chapter, the differ-
ent features of CI will be browsed with their mathematical description
and some references for the interested reader. Given the vastness of the
topic, this presentation will be far from exhaustive; rather, its main goal
is to introduce, in a pedagogical manner (assuming little or no prior
knowledge), the important concepts and notations that will be relevant
throughout this thesis.

In order to provide a clear track for the reader, let us consider the CI
example shown in Fig. 2.1. On the left, it reveals a clean 512 x 512 x 3
image of a beautiful dog in a garden. This is the image we would
have liked to get directly. Unfortunately, when we took the picture
with our smartphone, we accidentally touched the screen and the au-
tomatic refocusing system was running. In addition, we are using an
old smartphone with a low-quality camera. Because of that, the image
captured by the smartphone is the blurred and noisy version shown in
Fig. 2.1(right).

This classical context has probably happened to most smartphone
owners. One way to mathematically model this blur plus noise in the
image is written in (2.1).
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X Yy

200 300 400 500 200 300 400 500
Fig. 2.1 Our CI application example: a blurred and noisy image of a dog. (left) clean

512 x 512 x 3 image of the dog; what we want. (right) Blurred and noisy image of the
dog; what has been measured.

Our target CI example.

y = HY6 + n. @2.1)

The goal of this chapter is to progressively understand what are
the different mathematical variables represented in (2.1), and how it is
possible to partially recover the clean image of the dog in Fig. 2.1(left).

2.1 Forward Sensing Model

The Forward sensing model, or forward model for short, is the core of the
CI concept. It is a mathematical representation that describes how an
object of interest is transformed into measurement data by an imaging
system. The forward model encapsulates the physics and geometry
of the imaging system, including the interactions between the imaging
medium and the object being imaged.

Mathematically, any forward model can be written in the form
y = P(A(8)) (22)
where

m y € RM is the measurement vector; containing the measurement
data.
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m P is the noise operator discussed in Sec. 2.1.3; which incorporates
random variability into the measurement vector.

m A is the forward operator, discussed in Sec. 2.1.2; modeling all
known physics of the acquisition system.

m 0 € RX are the image parameters, discussed in Sec. 2.1.1; encoding
all the necessary information to describe the image of interest.

2.1.1 Image Representation

There are many ways to numerically encode and store visual informa-
tion captured by imaging systems.

Pixel-based Representation

The simplest form of image representation is a grid of pixels, where
each pixel value corresponds to the intensity or color at a specific loca-
tion in the image. In this case, the image writes

x € RN

where N is the total number of pixels, and is a vectorization of the image,
i.e., concatenating all columns of the image into one long vector. This
notation is also valid for videos (which are just sequences of images in
time), hyperspectral images (which capture the same scene at different
electromagnetic wavelengths), or any combination of space, time, and
spectral information.

Fig. 2.2 provides a zoom in the center of the image to highlight its
pixelation. For our image of the dog, there are 3 channels for the colors
red, green, and blue (RGB), and each channel is 512 x 512 pixels wide.
So the total number of pixels is N = 786 432. N = 786 432 is huge,
and this is just for this low-resolution image. A pixel value is generally
quantized in the range of 256 values, i.e., x; € [256] for all pixels i €
[N]. If we wanted to store the raw information of the pixels, this single
image would require 12.5MB of memory. On a modern smartphone
with 128GB of memory, this would only be enough for about 10 000
images (or, equivalently, a single 7min video), neglecting the memory
size of applications, etc.

Transform-based Representation

Natural images are not random. There is usually some structure be-
tween the pixels, which are not all completely independent of each
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Fig. 2.2 Zoom in on the 50 x 50 centered square of the dog image.

other. This means that among all possible vectors x € RV, natural
images are contained in a much smaller domain S C RY. This obser-
vation is the starting point for image compression techniques. The idea is
always the same: try to find a transformation operator ¥ such that our
image x can be represented in this transformed domain as

x=Y(0), 2.3)

and there are few nonzero values in the vector of parameters 6. A
model like (2.3) is called a low-complexity model. There is a mathemat-
ical way to count the number of nonzero values in a vector, called the
Eo—pseudonorml, it is defined as

llx[|o = [{x;, s.t. x; #0}].

An image with nonzero coefficients K, or equivalently s.t. ||x|o < K,
is called K-sparse. Intuitively, storing only the positions and values of
the nonzero coefficients in 0 requires less memory than storing all pixel
values. This is the foundational idea behind the most popular compres-
sion schemes such as JPEG [Wal92], JPEG2000 [TM02], used in all our
electronic devices.

The transform operator ¥ can take many forms, depending on what
we know about the content of the image. In Fig. 2.3, we provide a sim-
ple example of the second Daubechies wavelet [Dau92] transform of our

This is a pseudonorm because, among the three properties required to be a norm:
non-negativity, absolute scalability, and triangle inequality; this norm does not verify the
absolute scalability, i.e., ||0ullo = ||ullo # 0]|u]o-
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dog image. The image shown is the wavelet coefficients 8 = ¥*x where
¥ : 0 € RN — x € RY is the Wavelet operator, whose internal contents
need not be explained. Here, ¥ provides a transform that does not
change the number of pixels, and it is fully invertible (which is crucial
for efficiently reconstructing the image from its wavelet coefficients),
i.e., we have access to the inverse Wavelet operator ¥-1 = ¥* defined so
that ¥*Y = I. In Fig. 2.3, the top left small image of the dog is called ap-
proximation coefficients and contains a downsampled version of the im-
age. The other sub-images are called detail coefficients. They are mostly
zero (in black) except for the sharp transitions that outline the dog. For
a non-natural image filled with randomly selected pixels, there would
not be so many nonzero values in the wavelet-transformed image. If
only the nonzero (or negligible) coefficients of 0 are stored in memory
instead of the pixel values explained above, this example already rep-
resents a compression factor of 10. This simple example illustrates how
compressible natural images are.

Approximation
coefficients

100 e

200

Detail

coefficients
300

100

500

0 100 200 300 400 500

Fig. 2.3 3-level Wavelet transform of our dog image using the DB2 wavelet [Dau92].

Finding an efficient representation of the image is not only inter-
esting for storage. It is also key to image recovery when solving a CI
inverse problem. Indeed, finding a good image candidate in a reduced
parameter space simplifies the recovery procedure. In that case, it is
not strictly necessary to find an invertible sparsity operator, the only
requirement is to find a transformation such that there are few nonzero
coefficients in the transformed basis. In most work dealing with CI
challenges, the sparsity basis remains simple. With the Wavelet (and its
cousins), the most popular sparsity bases are

m Identity I, where the image is directly considered sparse in the
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spatial domain, i.e., ||x||o < K for a sparsity level K.

m Gradient (or Finite Difference) V, compatible with piecewise con-
stant images, i.e., images that have only a few transitions in the
pixel representation.

m Fourier F, assuming the image is exactly represented by a small
linear combination of complex exponentials.

m Hadamard H, similar in concept to the Fourier basis, but using
Hadamard matrices instead of sine and cosine functions [Mos19].
Its entries are +1.

Finally, the Singular Value Decomposition (SVD) is also popular to
get a sparse representation of a 2-D image which, in matrix form X ¢
RN->Ny can be decomposed into singular values as X = U diag(s)V*.
If ||s]|o < 7, the 2-D image X is said to be low-rank, with rank-r.

Chap. 3-4 will analyze the reconstruction of sparse and piecewise
constant images. With this section, we understood our first two el-
ements in Example (2.1): the discrete image is encoded in a Wavelet
sparsity basis as x = ¥0.

Neural Representation

More recently emerged the idea of using deep learning techniques to
represent image content.

Discrete: The first architecture that emerged is the Auto-encoder [HS06],
illustrated in Fig. 2.4, which is a fully-connected neural network archi-
tecture whose number of parameters progressively decreases in the first
half part called encoder, and then increases back up to its original size
in the second half part called decoder.

The encoder can be mathematically defined as
0=E(x):=Wp,n(ocrp10...000)(x)+br o, (2.4)
and the decoder as
x=D(0):=Wr(op 10...0071,21)(0) + by, (2.5)

where, for a typical autoencoder with Rectified Linear Unit (ReLU) ac-
tivations [Vin+10], we have that the hidden features at layer / write

0'[(6) = max(O, W0 + b[),
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O Encoder Decoder

Fig. 2.4 Architecture of an autoencoder. The original image x is input at the first layer,
and the encoder compresses its information down to the parameters 6. The decoder
tries to invert the effect of the encoder by uncompressing 6 up to an output ¥ aimed to
resemble x.

for any input vector 0 of appropriate size, a weight matrix W;, and a
bias vector b;. An autoencoder is specifically trained to minimize the
error between the input x and the output x images. The parameters
of the autoencoder are thus computed to minimize the expected error
over natural images as

min  Eyes [x — %3
(Wb,

The compressed image representation is the output of the encoder: 6.
There exists tons of other deep architectures with the same goal. To
name a few: convolutional and recurrent neural networks, generative
adversarial networks [MSS22], and transformers [Vas+17]. These con-
siderations are not covered in this thesis.

Continuous: A common feature of the upper cited deep architectures
is that they provide a discrete representation of the image. The only
way to numerically encode a continuous representation of an image is
to view it as a composition of continuous functions with a known ana-
lytical expression. For instance, a continuous image that is sparse in the
Fourier domain can be modeled as a finite sum of complex exponentials
such as

Q
x(r) =) O 2Pe T, (2.6)
k=1

where r € R? are the 2-D coordinates in the continuous image space.
The Implicit Neural Representations (INR) recently emerged [Mil+20] as
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a nonlinear way to learn a continuous representation of the image, i.e.,
the image is approximated as x(r) = x4 (r) where ¢ are the weights of
the deep architecture. INR are considered in this thesis. More details
can be found in Chap. 6.

2.1.2 Forward Operator

In the general definition of (2.2), the “forward operator” includes ev-
erything contained in A. In a noiseless scenario, it encapsulates the
mathematical and physical processes by which an object of interest is
transformed into measurable data, i.e., the noiseless data can be written
as

7 = A(6). 2.7)

The operator A : 8 € RX — § € RM serves as a comprehensive model
that describes how the imaging system interacts with the object, trans-
lating its intrinsic properties such as shape, density, or refractive index
into observable quantities like intensity or phase. As clear from the
notation A(6), the forward operator integrates the image representation
discussed in Sec. 2.1.1. Even though the image is parameterized by the
vector 0, the notations in (2.7) show that this parameterization allows to
describe the image continuously, e.g., with a continuous representation
such as (2.6). This will be the case for Chap. 3-4, whose sensing models
will describe a mapping from the continuous image to a single-pixel
measurement (see Sec. 3.2 and 4.3.3).

In the model (2.7), the number of measurements M is typically
larger than the number of parameters K to ensure image recovery, but
can ultimately be much smaller than the resolution N of a discrete im-
age. When an imaging modality first computes a discrete image x € RV
and then its representation in a smaller number of parameters 8 € RX
where K < N, we speak of image compression. If the imaging modality
is designed to obtain the compressed representation directly, we talk
about compressive imaging [AH21]. The idea of compressive imaging is
at the core of Chap. 3-4, where Chap. 3 imposes a compressive imaging
framework due to the physics of acquisition in multi-core fiber lens-
less imaging, and Chap. 4 proposes a compressive imaging technique
to overcome some tremendously large data acquisition and processing
in the context of radio-interferometry, and at a small drop in image re-
construction quality.

If the mapping is linear, A can be written in matrix form A € RM*X
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s.t.
iy = A0. (2.8)

Most well-studied CI problems are written as the linear sensor model
(2.8). It ranges from basic image restoration tasks like deblurring,
super-resolution, and image inpainting [GW07], to a wide variety of
tomographic imaging applications, including common types of mag-
netic resonance imaging [Fes10], X-ray computed tomography [EF02],
radar imaging [Bla04], among others [BM13].

Let us return to our example of a dog image x. In Fig. 2.5, we show
two examples of a linear forward model A applied to the discrete image
x. Fig. 2.5(left) is an example of an inpainting problem where the pixels
in the center of the image have been lost. Mathematically, the forward
model writes as simply as

y=Inx,

where I, subselects the rows of the identity matrix I into (), where Q) is
the set of seen pixel positions. Fig. 2.5(center) depicts a blur of the dog
image obtained from the discrete convolution?

J =hx+x = Hx, (2.9)

where h is the Gaussian kernel shown in Fig. 2.5(right), and H is the cir-
culant matrix that performs the discrete convolution. Eq. (2.9) revealed
a second element of the Example 2.1 provided at the beginning of this
section: H is the forward operator describing a discrete convolution with
a Gaussian kernel.

0 0 0

100 100 100

200 200 200
300 {9 300 300

400 400 400

500 500
0 100 200 300 400 500 0 100 200 300 400 500

500
0 100 200 300 400 500

Fig. 2.5 Two transformations of the dog image using a linear forward operator. (left)
masking the center of the image. (middle) blurred dog image. (right) Gaussian blur
used to obtain (center) from x.

Zyn = 25:1 hyx,_n, withn € [N]. n —n' is maintained in [N] with a modulo
operation.
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Chap. 3-4 will both study a linear forward model of the form i =
Ax. In particular, the forward operator will be decomposed as

A = RGF,
where:

® R is a special case of a random projection matrix, which allows
for compressive imaging.

m GF provides a partial Fourier sampling of the discrete image x. This
relates to a rich literature that studies the question of image recov-
ery from GF only [AGH14; AGR19; CRT06]. Worth mentionning,
both chapters consider a special case of partial Fourier sampling
called interferometry, whose most accurate mathematical repre-
sentation is in a symmetric—or bilateral—form (see Sec. 3.2.4 for
more details).

Chap. 5-6 examines a more complicated nonlinear forward model,
which is difficult to formalize in the notations of this chapter.

2.1.3 Noise

In the general definition of (2.2), “noise” includes everything contained
in P. The noise refers to any unwanted random variation in the mea-
surement data that obscures or distorts the noiseless information 7. It
can be introduced at various stages of image acquisition, processing,
and transmission. Noise can originate from several sources, includ-
ing sensor imperfections, environmental conditions, electronic inter-
ference, and quantization errors during analog-to-digital conversion.
Since noise is by definition unknown and random, it degrades the
quality of image reconstruction. There are many challenges in design-
ing and engineering imaging systems that aim to minimize the noise
[GWO07].

There are many different types of noise [B]]. To name a few, there
are

m Additive White Gaussian Noise (AWGN): the most common type
of noise. Its sources can be thermal noise, caused by the random
motion of electrons in conductors, resulting in a Gaussian distri-
bution of noise.
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m Shot noise or Poisson noise: caused by the discrete nature of electric
charge and the random arrival times of carriers (such as electrons
or photons) at a junction, or amplification noise.

m Salt and Pepper noise: characterized as non-physical extreme pixel
values and generally caused by digital image transmission errors
from defective sensor cells.

m Quantization noise: these are rounding errors resulting from analog-
to-digital conversions.

In this thesis, we only consider AWGN in Chap. 3-4. The AWGN is
easier to analyze theoretically because its statistics does not depend on
the signal of interest and is simple with a normal distribution. In the
case of AWGN measurements, the measurement vector writes

y=y+n, (2.10)
where n is the AWGN vector with random distribution

o~ CN(0,5°1).
Eq. (2.10) ellucidates the last term of the starting Example 2.1 y =
HY6 + n. The measured image y in Fig. 2.1(right) is a noisy version
of the blurred image of the dog # = HY0 in Fig. 2.5(center).

2.2 Inverse Problem

The inverse problem refers to the process of inferring the image param-
eters from the vector of observations. It consists of finding a way to
produce an estimate 8 <— y = P(.A(6)). The idea is to reconstruct an
image from indirect, incomplete, and noisy measurements. This is a
fundamental challenge in many areas of science and engineering.

From this section on, if the type of norm is not specified (e.g., ||x||),
it means that the discussion is valid for any norm.

2.2.1 lll-posedness

Inverse problems are typically ill-posed, that is, they do not satisfy one
or more of the conditions required by the Hadamard definition of well-
posed problems [Isa06, Sec. 2.1]: (i) a solution exists, (ii) the solution is
unique, and (iii) the solution depends continuously on the data. This
leads to challenges such as:
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® Non-Uniqueness: There may be multiple solutions that satisfy the
given observations.

m Instability/Noise Sensitivity: Observations are often contami-
nated with noise, making the inverse problem more difficult.
Small changes in the observations can lead to large changes in
the solution.

There are very few theoretical results about the ill-posedness of
nonlinear sensing models (except for special cases like phase retrieval
[CSV13; She+14] or one-bit compressive sensing [Jac+13; TJ23]), let us par-
ticularize the discussion to linear sensing models with AWGN, as de-
fined in (2.11).

Linear model with AWGN

y=Ax+n. (2.11)

A is usually non-invertible because there are less measurements than
unknowns. This causes the non-uniqueness of the solutions. For in-
stance, it is clear from Fig. 2.5(eft) that the central square of the dog
image x could be replaced by any other set of pixel values and yield the
same observed masked image.

From the model (2.11), even in the rare situations where an inverse
A~ of the forward operator exists, applying this inverse directly to the
measurement vector yields

¥=Aly=x+A"1n (2.12)

where small eigenvalues® of the forward operator A imply that A~ 'n
explodes the noise and causes huge instabilities in the reconstruc-
tion. This explosion also occurs when we consider a generalized
inverse (e.g., pseudo inverse) to treat the non-existence and non-
uniqueness problems. These issues are compounded by the continuous
nature of real-world images, which are thus modeled more faithfully
in infinite-dimensional function spaces than in any finite-dimensional
model [AH16]. The non-uniqueness of the solution and the instabilities

3The vector v and the value A are the eigenvector and associated eigenvalue of a
linear operator A if they satisfy Av = Av. In words, the vector v has its direction
unchanged by the linear transformation using A, and A informs on the length ratio of
v before and after transformation by A.
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caused by the noise have motivated the inverse problem research com-
munity to develop techniques that regularize the inverse problem. The
concept of regularization is introduced in Sec. 2.2.2.

2.2.2 Loss Function

Solving an inverse problem means minimizing a loss function £. For
the linear sensor model (2.11), the simplest minimization problem
writes

¥ =argmin L(y,u), L(y,u):= 3|y — Aul3. (2.13)

u
The solution of (2.13) if A is full-rank, easily obtained by differentiating
L with respect to u, is given by

¥=(A*A)" A"y, (2.14)

and is known as the pseudo-inverse solution. The adjoint operator A* is
formally defined in Def. 2.2.1.

Definition 2.2.1. The adjoint A* of an operator A := u € U
Au €V for an input domain U and operator domain V is defined by
the following identity

(Au,v)y = (u, A*v)y, (2.15)

foranyv € V.

If A is not full-rank, the pseudo-inverse is given by
¥=A"(AA")ly (2.16)

which, among the infinite set of solutions in this case, corresponds to
the solution of (2.13) of minimal ¢,-norm, i.e.,

X =argmin |ul, st Au=y. (2.17)
u

If A~! exists, the pseudo-inverse solution in (2.14) particularizes to
¥ = A !y, thus recovering (2.12). The loss function £ defined in (2.13)
is called data-fidelity because it computes the squared ¢, distance be-
tween the measurement data y and the candidate measurements Au
obtained from the forward operator model. Depending on the proper-
ties of A and on the noise distribution, the data-fidelity can sometimes
be defined with other norms, such as the ¢;-norm. The ¢;-norm usually
arises in the case of intensity measurements and will be used in partic-
ular in Chap. 3-4.
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Regularization

Due to the ill-posedness of most inverse problems, discussed in Sec. 2.2.1,
the loss function is generally modified by adding a regularization term
R(u) as written in (2.18).

Regularized loss function

Llyu) = 3ly—Au|® + Ru) . (2.18)
S——— N~
Data—Fidelity Regularization

Note that the type of norm in the data-fidelity term of (2.18) was inten-
tionally left unspecified in order to remain valid for multiple choices.
The goal of the regularization term is to promote solutions u that mini-
mize both the data-fidelity term and the regularization term. The de-
sign of the function R typically requires some a priori knowledge of the
domain & C RN to which the true image x belongs.

One of the most popular examples of regularization term is R (u) =
||u||o, which promotes sparse solutions [FSY10], i.e., images u with only
a few nonzero coefficients, as discussed in Sec. 2.1.1. As will become
clear in Sec. 2.3, the {yp-«<norm» is generally replaced by convex surro-
gates such as the /;-norm*. Sparsity can also be promoted in a trans-
formed domain as R (u) = ||'¥*ul|o, where ¥* is the adjoint transforma-
tion operator (also discussed in Sec. 2.1.1). Other known regularization
functions are: the ¢,-norm®, which promotes solutions with bounded
coefficients and smoother than the ¢;-norm, the nuclear norm || - || pro-
moting low-rank 2-D images, the Total-Variation (TV) norm || - ||ty pro-
moting piecewise-constant images.

In addition to all declinations of norms, the regularization term can
also model a strict constraint for the solution to belong to a set. For
example, the non-negativity constraint is imposed in Chap. 6 with the
regularization term

R(u) = g+ (u), (2.19)

“The uSARA algorithm used in Chap. 4 considers another convex surrogate de-
scribed in (4.47).

5The use of the fr-norm for regularization is known as Tikhonov reqularization
[Tik43].

38 |



Inverse Problem | 2.2

where g+ () is the indicator function applied componentwise as

0, ifu; >0,

e (i) = { +00, otherwise.’ (2.20)

Naturally, the considered R can be any linear combination of the upper
mentioned regularization terms.

Remark 2.1. The regularized loss function defined in (2.18) also finds a
nice statistical interpretation. Indeed, the minimization estimate can be
seen as a Maximum A Posteriori (MAP) estimator, i.e., the estimate
is computed as

X = argmax log p(uly)

= argmin —log p(y|u) —log p(u) (2.21)

u
= argmin 1|y — Aul]> + R(u).
u
In (2.21), the Bayes law* was used to jump from the first to the second
line. By identification between the second and third lines in (2.21), it is
seen that the data-fidelity term can be related to the posterior distribu-
tion as

p(ylu) = e~ 2lv-4ul,

and the regularization term can be related to the prior distribution as

“p(xly)p(y) = p(ylx)p(x).

All the minimization problems considered in this thesis are con-
tained within the framework stated in (2.18). Namely, in Chap. 3-4, we
analyze for specific forward sensing models the LASSO and Basis Pur-
suit DeNoise (BPDN/,) programs [VF08] numerically, and the BPDN,
program theoretically.

¥ =argmin ||y — Au|j3 s.t. [lull; <7, (Lasso)
u

for a sparsity parameter T > 0.
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X =argmin |u|; s.t. |y — Au||%, <o, (BPDNy,)
u

with p € {1,2} and an additive noise level o > 0.

The regularization terms associated to (Lasso) and (BPDNy, ) are respec-
tively U<t and ‘Hy—A~H%<v'

Optimization Viewpoint

Returning to the definition (2.18) of a regularized loss function, the the-
oretical characterization of the underlying minimization problem be-
longs to the field of First-Order Optimization [Becl7a]. Depending on
the forward sensing model and the regularization term, the loss func-
tion £ may or may not be convex®. In general, R is a closed proper
convex function, but not necessarily differentiable, meaning that its gra-
dient does not exist everywhere. We discuss in Sec. 2.3 how to min-
imize a non-differentiable regularization term. If the loss function is
nonconvex, this means that £ may have one or more local minima, and
optimization algorithms are likely to get stuck in one of these local min-
ima. Chap. 6 studies an inverse problem that is nonconvex. However,
a deeper analysis of nonconvex inverse problems is difficult and out of
the scope of this thesis.

Fig. 2.6 illustrates 1-D equivalents of common inverse problems. In
Fig. 2.6(a), we observe the equivalent of an ¢, (squared value) data-
fidelity term, accompanied with the equivalent of an ¢; (absolute value)
regularization term. It can be seen that the data-fidelity term 1 (y — 5u)?
is convex and differentiable, but the regularization term 4|x’| is con-
vex but non-differentiable at the origin. Fig. 2.6(b) shows the 1-D
equivalent of a phase retrieval problem, where the observation model is
y = |1.5x|? + n. It can be seen that the measurement in intensity makes
the data-fidelity term nonconvex, with two local minima. The regular-
ization term makes the total loss function convex, but with global min-
imum 0, which is proper to the 1-D case.

6Simply stated, a strictly convex function has at most one global minimizer and no
local ones. A sufficient condition for existence is the semi-continuity and coercivity of
the function.
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Fig. 2.6 1-D examples of loss functions. (a) A linear sensing model with ¢;-norm
penalty. (b) An intensity sensing with ¢;-norm penalty. For both (a-b), the observation
y was obtained with the ground truth value x = 0.3.

This section has emphasized that solving an inverse problem im-
plies solving a minimization problem, and this requires the use of op-
timization methods. In Sec. 2.3 we discuss the known algorithms used
to solve these minimization problems. We have not discussed the rel-
ative weight that must be set between the data-fidelity term and the
regularization term. This weight is usually chosen heuristically, based
on qualitative metrics, and this is also what is done in this thesis. Still,
we propose a heuristic way to iteratively adapt this weighting in Ap-
pendix 2.6.1.

2.3 Recovery Algorithm

Choosing the loss function to be minimized in order to solve the in-
verse problem is not the end of the story. Next, a procedure must be
established to effectively compute a minimizer of that loss function.
This procedure is called a recovery algorithm. Recovery algorithms have
been extensively studied in optimization, and new ones are published
frequently.

2.3.1 Gradient and Proximal Operator

Naturally, for realistic inverse problems, it is not affordable to eval-
uate the loss function on a fine grid of search space locations as in
Fig. 2.6, first because applying the forward operator generally has a
non-negligible computational cost, and second because if one envi-
sioned a grid-search strategy with N points per dimension in a D-
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dimensional search space, it would require N b points on which to eval-
uate the loss function, which is totally unattainable. Instead, all op-
timization algorithms are built on the same principle; they start with
an initial guess x\°), and iteratively update the candidate minimizer with
a local evaluation of the loss function £(y,x%)) and its derivatives
(VuL, V2L,...) evaluated on the current k-th candidate. In this the-
sis, for the simplicity of the theoretical analysis, we only consider First-
Order Optimization methods [Bec17a], i.e., methods that require only the
evaluation of the loss £ and its gradient V, L.

An /0, data-fidelity term of the form |y — A(u)||} has as a sim-
ple gradient A*(A(u) — y), where A* is the adjoint operator (see
Def. 2.2.1). However, since some terms in £ may be non-differentiable,
this means that their gradient does not exist. The conventional workaround
is to use the gradient of a convex surrogate of these non-differentiable
functions, called the proximal operator (a.k.a. prox), defined in Def. 2.3.1.

Definition 2.3.1 (Proximal operator). The proximal operator of a
function ¢ : u € RN — ¢(u) € R is defined as

prox,(u) := argmin g(u') + o —o'|J3. (prox)
u/

It can be shown that the Moreau envelope min,, g(u') + 3 |lu —u'[|3 is
a smoothed form of the function g, so it is always convex, and has the
same minima. The use of proximal operators in recovery algorithms is
a large topic, known in the literature as proximal algorithms. [PB14]. In
this thesis, we will essentially use two proximal operators: (i) the prox
of the /1-norm, named Soft-thresholding and defined in (2.22), and (ii)
the prox of the indicator function is for a convex set S, named Projec-
tion and defined in (2.24).

Soft-thresholding

prox)\”.Hl(u) = Tr(u), (2.22)

with the soft-thresolding operation applied on each component u;
of u as
u;+ A, ifu; < —A
7;\(141') = 0, if |uz-| < A (223)
u; — A,  ifu;>A
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prox, (u) := Ils(u) := argmin Hu—|. (2.24)

u'eS

The explanations given above are also valid for nonlinear sens-
ing models, where we compute the local gradient of the loss function
around the current estimate. The local gradient of a nonlinear sensing
model is in particular what is implicitely computed by automatic differ-
entiation in Chap. 6. In Sec. 2.3.2 we review some popular optimization
algorithms used in this thesis for image reconstruction.

2.3.2 Popular Algorithms

In order to minimize the regularized loss function (2.18) particularized
to an /,-norm data-fidelity term, i.e.,

Llyu) = 3ly—Aul3 + R@) , (2.25)
—~— N~
0 Data—Fidelity Regularization

the most popular optimization algorithm is the Proximal Gradient
Method (PGM) [Bec17b; PB14; CP11b] (a.k.a. Forward-Backward) given
in Algo. 2.1.

Algorithm 2.1 Proximal Gradient Method

Require: y, A, x(0)

1. k=0

2: while k < K do

3 y*t) = x0) 40 A*(AxK) —y) > Gradient descent step
4 ) = prox, (y*V) > Proximal step
5: k+=1

6 ¥ = xK)

In Algo. 2.1, we voluntarily did not specify the usual stopping crite-
ria used in practice, like absolute or relative tolerances, but only a fixed
number of iterations. As its name suggests, the PGM simply alternates
between

m a gradient descent step: an update in the direction of the nega-
tive gradient of the data-fidelity term ¢, where a®) is the step-
size, which may vary over the iterations. If the stepsize is kept
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constant, it is known that the condition for convergence is that
a < 2/||A||? [PB14]. We derive this condition again (only for the
simpler case of gradient descent) in Sec. 5.4.1.

® a proximal step: an update applying the proximal operator of the
regularization term R. This term can include a factor A balancing
the two terms.

The PGM simplifies to the classical Gradient Descent method when there
is no regularization term. An extension called Generalized Forward-
Backward [RFP13] exists when the regularization term is given as a sum
of terms (e.g., || - ||tv and tg+). Furthermore, we highlight that the Lasso
and BPDN/, minimization problems are both solved by the PGM. Thus,
it has been shown [VF08] that there exists a bijection between the two
problems for the appropriate pair of parameters (7,0). In Chap. 3-4
we use the SPGL17 [VF08] for solving Lasso and BPDN,,. We stress
that Iterative Shrinkage-Thresholding Algorithm (ISTA) [DDDO04; BT09] is
a particular case of the PGM. However, the Iterative Hard Thresholding
(IHT) [BDO08; FS18] solves a nonconvex minimization problem, regard-
less of its resemblance to the PGM.

Worth mentioning are the Plug-and-Play methods

[VBW13; KMW18; Ter+23], which consist in replacing the proximal op-
erator in the PGM by a deep denoiser. Extensions of the concept of in-
tegrating deep architectures into the regularization part of optimiza-
tion algorithms exist such as Deep Equilibrium [BKK19; GOW21]. The
uSARA and AIRI state-of-the-art image recovery algorithms used for
radio-interferometry in Chap. 4 are both variants of the PGM, with AIRI
being more precisely a Plug-and-Play method.

Coming back to our example of a dog image x, we show in
Fig. 2.7(c) the reconstructed image x = ¥0 obtained by applying 500
iterations of the PGM to the following minimization problem:

0 = argmin i|ly — H¥u||3 +510>|ul;.
u

It is observed that even with an old image recovery method using a
simple wavelet decomposition of the dog image and a few iterations
of the PGM, the quality of the reconstructed image improves over the
observed blurred and noisy image. Fig. 2.7 concludes our example of
dog image recovery started at the beginning of this chapter.

"Python toolbox: https://github.com/drrelyea/spgll.
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Fig. 2.7 Reconstruction of the dog image applying the PGM with R(u) = ||'¥*ul|;.
(a) Ground truth image x. (b) Observed image y (SNR= 18.6dB). (c) Reconstruction ¥
(SNR= 20.8dB).

In Chap. 4 we use a type of greedy algorithm called the Matching Pur-
suit algorithm [MZ93; Hog74]. See Sec. 4.4.1 for more details. There ex-
ist other popular proximal algorithms like Douglas-Rachford or Alternat-
ing Direction Method of Multipliers (ADMM) [PB14], unused in this the-
sis, that use only proximal operators even for the differentiable terms
of the loss function. The last two optimization algorithms we mention
are the Stochastic Gradient Descent (SGD) and Adam [KB14] algorithms,
which are specifically designed for the optimization of neural network
architectures and are used in Chap. 6.

There are tons of other optimization algorithms, and this section
was just a brief overview of the ones used in this thesis.

2.3.3 Reconstruction Quality Metrics

For the sake of harmonization, the only quantitative metric used in this
thesis to measure the quality of image reconstruction is the Signal-to-
Noise Ratio (SNR), defined in Def. 2.3.2. We mention the existence of
Mean Square Error, Peak Signal-to-Noise Ratio, Mean Absolute Error, and
Structural Similarity Index Metric, among others [Wan+04].

Definition 2.3.2. The Signal-to-noise ratio (in dB), which compares
the energy contained in a ground truth signal u to the error u — u made
by its approximation u, is defined as

SNR(u, ) = 20logyo([lull2/u — ). (2.26)
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2.3.4 Momentum Acceleration

Some iterative algorithms can be accelerated using a certain history of
the previous iterates to reach a convergence rate in O(1/k?) instead of
O(1/k) without acceleration where k is the number of iterations. An ex-
ample of accelerating the PGM using momentum is given in Algo. 2.2.

Algorithm 2.2 Accelerated Proximal Gradient Method

Require: y, A, x0 =200, t5 =1,0<a < 1/[|A|?

1: k=0

2: while k < K do

3: yktl) = 20 — g A*(Az0) — ) > Gradient descent step
4 ) = prox, (y*+V) > Proximal step
5: tkrr = Ty I V21+4t’% > Momentum update
6z = x(t1) 4 (%) (xUHD) — x(0)) > Apply momentum
7: k+=1

8 ¥ =xK

The momentum accelerated proximal gradient method is com-
monly
known under the name FISTA® [BT09]. This idea of considering a mo-
mentum to improve the convergence rate of optimization algorithms
is attributed to Nesterov [Nes83]. This momentum acceleration trick is
used in Chap. 5-6 for solving a linear system of equations.

Now that we have reviewed all the optimization algorithms used in
this thesis, we will jump to what recovery guarantees can be provided
for the images reconstructed using these algorithms.

2.4 Recovery Guarantees

In anticipation of the theoretical results of Chap. 3-4, we are interested
in reviewing the theoretical image recovery guarantees available in the
literature to do compressive imaging. A recovery guarantee consists in
providing an upper bound on the distance between the ground truth
image and its reconstruction. In line with the current stabilized the-
ory, the discussion focuses on noisy linear forward models of the form

8The Fast Iterative Shrinkage-Thresholding Algorithm is strictly speaking only valid for
an /; regularization term.
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y = Ax+n’.

The success of image recovery algorithms depends heavily on the
loss of information induced by the forward operator A. If distances in
the image x domain are preserved in the measurement domain of A,
the forward operator is said to be an isometry (with respect to a given
norm). Formally, an isometric operator satisfies

|Ax| = v|x||, VxeRN (2.27)

where v is an optional scaling factor. If A is an isometry, an upper
bound € := maxz, ||A¥ — Ax|| on the error of a candidate measure-
ment Ax spontaneously provides an upper bound on the error of the
corresponding candidate image as

¥ — x| = JlAGE -] < (2.28)

<M

Eq. (2.28) represents a first simple example of an image recovery guar-
antee for an isometric forward operator and noiseless measurements.

The condition for a matrix A to be an isometry for all signals of the
real space RV is generally that this A must be square, i.e., A € RNV,
and full-rank (an orthogonal matrix is a particular case). The identity
I, Fourier F, and DB2 Wavelet ¥ matrices are examples of isometric
matrices. Strict isometry like (2.27) requires N measurements to ensure
image recovery. However, as discussed in Sec. 2.1.1, natural images
generally belong to a smaller dimensional domain S C RN. For exam-
ple, in Fig. 2.3 we showed visually that the dog image is sparse in the
DB2 wavelet basis, i.e., x = Y0 with 8 € Xg. Thinking about linear
systems that are determined when the number of independent equa-
tions equals the number of degrees of freedom, this gives a glimpse that
sometimes less than N measurements are needed to recover the fewer
K < N parameters of a sparse image. This idea is at the core of the
Compressive Sensing (CS) domain, originally proposed in [Don06]. In a
nutshell, CS is a technique that allows the reconstruction of a signal or
image from a number of measurements significantly smaller than that
traditionally required by the Nyquist-Shannon sampling theorem, i.e.,
M < N.

9Without loss of generality if the image x is replaced by the image parameters 6
originally given in Sec. 2.1.1.
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In the aim to provide an isometry between the image domain and
the measurement domain for all natural images x € S, injecting ran-
domness into the measurement process is the only known tool to beat
the “square-root bottleneck” [Mix15], i.e., requiring a number of mea-
surements that goes below the square of the sparsity level M < O(K?).
The recovery guarantees given in Sec. 3.3-4.5 exploit randomness to
provide sample complexities M = O(Klog(N/K)). Below we discuss
two standard types of recovery guarantees.

2.4.1 Nonuniform Recovery

In the context where A is built randomly, a nonuniform guarantee as-
serts that a single draw of A is sufficient to recover a fixed sparse vec-
tor x. Among the technical tools for proving image recovery, let us
formally define the coherence in Def. 2.4.1.

Definition 2.4.1. Let A = (ay,...,ay) € CN bean orthogonal ma-
trix,i.e., A*A = L. The coherence of A is precisely
|a}a]

A):= max -— 1 _¢[N11]. (2.29)
MA) = B Taolals € OV 1

A is perfectly incoherent if u(A) = N1

The coherence y(A) measures the maximum correlation between
any two columns of A. It is particularly useful for providing image
recovery guarantees when a random subsampling of an incoherent or-
thogonal forward operator is taken (e.g., random Fourier subsampling
[CRT06; AGH14]). Let us provide an example of nonuniform recovery
with the results of [AH16; CP11a] synthesized in Th. 2.1.

48 |



Recovery Guarantees | 2.4

Theorem 2.1 (Exact recovery with subsampled incoherent mea-
surements.). Let A € CN*N be an orthogonal matrix, and let A €
CM*N pe g subselection of the rows of A with the selected subset
Q) C [N] chosen uniformly at random, then a given sparse image x,
with sparsity level K, and observed through the forward sensing model

y = Aqx, (2.30)

can be recovered exactly with probability exceeding 1 — €, provided that
the number of measurements satisfies

M > u(A)N K(1 +log(e™ 1)) log N. (2.31)

What Th. 2.1 shows, is that if the isometric operator A is incoherent
(#(A) = N1), like the Fourier matrix F for instance, then the image
can be recovery exactly with a number of measurements M that is pro-
portional to Klog N. For a sparse image with sparsity K < N, this
implies M < N. In others words, the number of measurements can
be significantly smaller than the target image resolution, meaning the
forward model (2.30) constitutes an example of compressive imaging.

Th. 2.1’s result has since then been extended to other guarantees
that rely on the notions of sparsity in levels and local coherence. [KW14;
Adc+17; AH21]. In a nutshell, these extensions claim that compressive
imaging can be achieved even for operators A that are globally coher-
ent (11(A) < 1) but locally incoherent, provided that the sparsity of the
image of interest is distributed with some specific structure over the dif-
ferent levels of its decomposition into a sparsity basis (e.g., wavelets),
and the sampling strategy is adapted accordingly. This generally implies
variable or multilevel sampling strategies, which are closely related to the
Fourier subsampling obtained in Chap. 3-4. While the theoretical re-
sults related to local coherence are beyond the scope of this work, we
emphasize that they should be used, especially the results in [AH21,
Chap. 12-13], to provide more rigorous properties of the Fourier sub-
sampling obtained from interferometric measurements in Chap. 3-4.
The shortcut taken in these chapters (for several reasons) was to make
the assumption that the Fourier subsampling satisfies the RIP;, , .

Nonuniform recovery guarantees prove that image recovery is ob-
tained with high probability (w.h.p.) for an arbitrary image x, provided
that A has just been randomly selected [CP11a]. Uniform recovery guar-
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antees claim that if the forward operator A has been randomly sampled
and then fixed once and for all, w.h.p. image recovery is guaranteed
for all sparse signals (in a given basis). Uniform guarantees are more
restrictive than nonuniform ones. Even though there exist theoretical
results using the coherence, we present in Sec. 2.4.2 another technical
tool, named the Restricted Isometry Property.

2.4.2  Uniform Recovery

A uniform recovery guarantee asserts that a single draw of the ma-
trix A is (with high probability) sufficient to recover all sparse vectors
x € Xk. The main tools for proving so-called uniform recovery guaran-
tees are the coherence (see Def. 2.4.1), the robust Null Space Property (not
discussed in this thesis) and the Restricted Isometry Property (RIP).

The RIP provides a measure of how well, for all possible K-sparse vectors,
the distance between these vectors is preserved when they are mapped
to the measurement domain by the matrix A. A formal definition of the
RIP is given in Def. 2.4.2.

Definition 2.4.2 (RIP, /¢,). A linear operator A is said to satisfy the
(£2/1y) restricted isometry property, or RIPy, /b (X, mg, Mg) with

pe{L2}if
mg|o|* < [|4w]l}; < Mkllo|?, Vo € Zk. (RIP, /,)

An abuse of notation will sometimes be used to write
RIsz/gp (ZK, 5) 0= RIsz/gp (ZK, 1-0,1+ 5)

The RIP, unlike coherence, allows to provide uniform recovery guar-
antees (it can be seen in (RIP;, /() that the isometry is provided Vv €
2k). Note that Restricted Uniform Boundedness (RUB) [CZ+15, Def. 2.1]
is a relaxation of RIP where the bounds are not necessarily tight. Analo-
gous to local coherence, there is a RIP in levels for images sparse in levels
[BH14; LA19].

The pioneering result of [Don06], which gave birth to the field of
Compressive Sensing, was to show that all K-sparse vectors x € Zx C RN
sensed by the sensing model y = Ax + n for an ii.d. random Gaus-
sian matrix A could be recovered in a small number of measurements
M < N. The proof essentially relies on proving that A satisfies the
RIPy,/0,(Xk,0) with high probability when the number of measure-
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Measurement space Image space
2¢ D
\y=Azx +n -
(%) . (’.i\)
oy =2 [ ]
Y= Az RM N AN

Fig. 2.8 Geometrical intuition of the RIP. The distance between the ground truth y
and the candidate measurements ¥ is proportional to the distance between the ground
truth x and the candidate sparse images ¥, where this distance is inversely proportional
to the number of measurements M.

ments exceeds a threshold. We formalize this in a simplified formu-
lation in Th. 2.2.

Theorem 2.2 (RIP, /,, for dense Gaussian sampling). Let us con-

sider a linear forward operator A € RM*N filled with i.i.d. random

Gaussian entries, i.e., a; | ~ N (0,1/M). For a distortion 6 > 0 over
1.1

the set Y. and some constants C,c>0,if
M > CKlog (N/K), (2.32)

then, with probability exceeding 1 — Ce=M, the operator A respects the
RIPy, /0,(2k, 0).

In Th. 2.2, the condition on the number of measurements in order
to ensure that A satisfies the RIP,, ,;,(Xk, ) w.h.p. is called the sample
complexity. It has been shown to be a sharp bound, meaning that it is
not possible to go any lower.

One of the contributions of Chap. 3-4 is to prove, by a result anal-
ogous to Th. 2.2, that the RIP is satisfied with high probability for a
specifically related form of the linear forward operator, thus proposing
a compressive imaging modality. More precisely, the forward operator
is random with a specific structure, and this is the randomness injected
in A that allows to provide uniform recovery guarantees. The basic
principle is to show that the norm of the associated random measure-
ments is a random variable with tail bounds, i.e., concentrated around
its expectation. We refer to [Ver10; Tro22] for the main ingredients use-
ful for proving concentration properties. In particular, the fixed and
deterministic Fourier sampling imposed by core or antenna positions
in Chap. 3-4 is a problem for providing a probabilistic RIP, /. This is
the origin of the stated Assumptions 3.5-4.5.
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The final point of discussion is the tractability of all the aspects of
inverse problem solving discussed in this chapter. In Sec. 2.5, we dis-
cuss three elements involved in the complexity of the image recovery
procedure.

2.5 Complexities

There are multiple ways to assess the efficiency of a computational
imaging modality. Three aspects related to the computations are listed
below.

2.5.1 Sample Complexity

The sample complexity measures the size of the measurement vector as
a function of the amount of information contained in the image to be
recovered.

In uncompressed CI contexts, it is generally possible to design a
deterministic scheme that recovers the discrete signal in as many mea-
surements as its intrinsic number of degrees of freedom, i.e., the dimen-
sion of the signal ambient space; Prop. 3.1 is an example.

However, we are more interested in compressive imaging schemes
where the sample complexity is similar to (2.32), i.e., the number of
measurements must satisfy an inequality of the form

M > CKlog(N/K),

but M < N for an image resolution N and sparsity level K. We pro-
vide three motivations for reducing the sample complexity: (i) accel-
erated acquisition, (ii) reduced memory cost, (iii) energy efficiency. In
Chap. 3-4 we theoretically provide and numerically validate sample
complexities similar to (4.54).

2.5.2 Computational Complexity of the Forward Model

The computational cost of applying the forward operator A is critical
because it must be computed at least once within each iteration. For
example, the Proximal Gradient Method defined in Algo. 2.1 requires
one application of A and another of A*. A naive computation of the
matrix product Au for any vector u € RN costs O(N?) multiplications,
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which can be intractable, especially when dealing with 4-D data as in
Chap. 6.

Hopefully, there exists many ways to reduce this cost, depending
on the structure of the operators involved. First, we will use the Fast
Fourier Transform (FFT) algorithm [CT65], which computes the Fourier
transform F in O(Nlog N) operations, in all three CI contexts covered
in this thesis. Second, the Non Uniform FFT (NUFFT) GF considered in
Chap. 4 computes the Fourier transform of a discrete image at contin-
uous frequencies by applying a sparse interpolation operator G filled
with only 50N nonzero values. Third, also in Chap. 4, a Bernoulli modu-
lation matrix, i.e., a matrix M € {£1}N*N isused to further reduce the
number of measurements. The advantage of Bernoulli modulations is
that they only involve sign flipping, which does not require multiplica-
tion operations and thus has a negligible impact on the computational
load.

2.5.3 Convergence Rate of the Recovery Algorithm

As important as the computational cost of applying the forward model
is the number of times it needs to be applied. This is directly related to
the number of iterations required by the optimization algorithm used
for image recovery (see Sec. 2.3) in order to reach convergence, a.k.a.
the convergence rate.

Among the main recovery algorithms used in this thesis, the Prox-
imal Gradient Method is known to converge at a rate O(1/k), where k
is the number of iterations, using a fixed step size « € [0,2/L), where
L = ||A||? is the Lipschitz constant of VL [PB14]. The accelerated
PGM with momentum, described in Algo. 2.2, has a convergence rate
O(1/k?) and will thus be favored. For strongly convex functions, and
in particular quadratic functions like the one studied in Chap. 5, the
convergence is linear, i.e., the Gradient Method converges at a rate
O(ck) for a convergence rate c. The ADAM algorithm, used to optimize
the weights of an Implicit Neural Representation in Chap. 6, is sug-
gested to converge to a local minimum at a rate O (log k//k) [Déf+20]
hence typically requires thousands of iterations to reach convergence.

In summary, the computational efficiency of a CI modality can be
evaluated in multiple ways, such as memory, required computational
resources, and reconstruction time. These questions are discussed in
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several parts of this thesis.
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2.6 Appendix

2.6.1 Heuristic Adaptative Weighting of the Regularization

The regularization term R (u), discussed in Sec. 2.2, is generally accom-
panied by a weighting parameter. For instance,

X = argmin 1|y — Au|)3 + Al|ul;. (2.33)
u

As explicitly written in (2.33), increasing A increases the weight of the
/1 regularization relative to the data-fidelity term. This parameter can
be set to any fixed value. However, a connection with the associated
constrained inverse problem can be made as

X =argmin |ul|; st |y—Aul2<e,
u

where the fidelity error can be estimated as € = | Au®) — y||,. If e®) >
€, A must be decreased, and vice versa. This leads to a simple heuristic
adjustment of A as

AU+ — A<k>£. (2.34)

A drawback of (2.34) is that it requires an estimate of the energy of
the noise € = ||n||2, which is not easy in practice. However, an upper
bound on the noise level € < ¢, is sufficient and is directly associated
to a target SNR of the reconstruction. One can specify a chosen SNR
value for the reconstruction as

o~ Ixll2 Y\ (12
SNR(x,X) = 20log, (M ~ 20log,, Teu (2.35)

and the e®) = ¢, in (2.34) is obtained by inverting (2.35). Naturally,
this technique modifies the loss function to be minimized between
iterations. We used it for the numerical reconstruction experiments
performed to construct the phase transition diagrams in Sec. 3.4 and
Sec. 4.6 in order to target an SNR value higher than the success thresh-
old. The Numerical Tours [Pey11] include many numerical tricks like
this one.
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Rank-One Compression
of Interferometric
Sensing

HERE we begin our journey into the world of interferometric sensing and
Rank-One Projections (ROP). It will continue in Chap. 4.

Concretely, this chapter studies the problem of recovering an image
f € RY from linear combinations of a subset of its Fourier coefficients.
More specifically, we are interested in a symmetric sensing model that
cascades:

1. An interferometric matrix: an hermitian matrix Z[f] € HC of
Fourier coefficients of the image (the details of which will be
given in Sec. 3.2), with

2. Symmetric ROPs: SROP of this matrix with a unique controllable
vector & € C called sketching vector.

In a discretized version, the model boils down to the form
y=oa"Z[fla (3.1)

where y is the single measurement. Interestingly, some control on the
content of Z will be possible, too.

The main achievements of this chapter are to prove that (i) this sens-
ing model actually arises in real applications, (ii) the theory of Compres-
sive Sensing (CS) can be leveraged to provide formal recovery guaran-
tees when a small' number of measurements are taken with the sketch-

LA number of measurements proportional to the intrinsic complexity of the image
to be recovered, which can be much lower than its number of pixels.
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ing vector « being populated with (some given type of) i.i.d. random
values, and (iii) it works in practice. This general problem is applied to
MultiCore Fiber Lensless Imaging (MCFLI), giving a physical sense to the
mathematical quantities involved.

These contributions extend earlier results studying the recovery of
matrices from ROPs, and others demonstrating the capabilities of MCF
imaging in a noncompressive manner.

This chapter mostly coincides with the content of our publica-
tion "Interferometric Lensless Imaging: Rank-one Projections of Im-
age Frequencies with Speckle Illuminations" [Leb+23]. However, a dis-
crete form appearing in (ROPI) is new and will be reused in Chap. 4.
The code developed in the context of this chapter can be found at
https:/ /github.com/olivierleblanc/ROPI.

3.1 Introduction

3.1.1 Motivation

The interest in the research questions raised in this chapter is twofold.

Rank-One Projected Interferometric Sensing is Intrinsically Interest-
ing

The model (3.1) itself exhibits nice features to study; the Fourier coeffi-
cients of f are encoded in a matrix that is specific to interferometric sens-
ing as opposed to general partial Fourier sampling. The model is linear
in the image f and symmetric, producing positive (intensity) measure-
ments.

In the application covered in this chapter, the interferometric matrix
T is fixed once and for all by design, but its design will be key to good
recovery properties.

Since a single measurement from the sensing model (3.1) is insuf-
ficient to recover the image, multiple measurements are obtained by
tuning the sketching vector a. A simple scheme can recover the inter-
ferometric matrix Z exactly from as many well-chosen measurements
as there are degrees of freedom in it. Another simple scheme can per-
form raster-scanning (RS), i.e., make the best possible focus on each co-
efficient of f in as many measurements as the target image resolution.
This RS principle will reappear with MCFLI in Sec. 3.2.2. However, we
are interested in studying random projections, i.e., a scenario where
the sensing vector y = (y1,...,ym)' is obtained with, Vm € [M],
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iU[0,27)

Ym = oy, Lway, and (ocm)q .;\& . While injecting randomness
1.1,

into the a’s might seem stra'ﬁg.e at first, it has strong connections to the
original idea of CS [Don06]. The intuition behind it is that this random-
ness will result in a set of random linear combinations of the available
Fourier samples. In the end, the hope is to recover the image f from
only a few of these random projections.

MultiCore Fiber Imaging as a Motivating Application

The interest in the (3.1) model arose from our will to better describe the
acquisition in MCFLI. Actually, MCF were already used for telecom-
munication purposes, attractive for their large capacity transmission
[KS09]. Recently, intensive research efforts for Lensless Endoscopy (LE)
using multimode [Loc+22; PM16] or MultiCore Fibers (MCF) [Siv+16;
And+16; Sun+22] have emerged, paving the way for deep biological
tissue [CKH22] and brain imaging. In addition to the biomedical field,
MCEFLI also has potential applications in industrial endoscopy [Liu+22],
to inspect hard-to-reach machinery and equipment; and robotic vision,
where the idea of soft robots [Haw+17] could be pushed down to the
microscale.

Single pixel detection

Optics 2-D MCF
LD D. section

UL ) et

:J’J 3

v ] a

>

B Laser

Wavefront
shaper D
(SLM) [
Imaged Fluorescence signal
(biological) o )
sample Highlighted point

Fig. 3.1 Working principle of MCFLI with cores arranged in Fermat’s golden spiral
when the SLM is programmed in raster-scanning mode (BS = Beam Splitter).

The principle of MCFLI is illustrated in Fig. 3.1. A laser wavefront is
shaped using a Spatial Light Modulator (SLM). The SLM allows individ-
ual control of the light injected into each of the MCF’s cores, which are
arranged in Fermat’s golden spiral. This core arrangement is described
in Sec. 3.2. Light injected into the cores propagates from the distal end
of the MCF and illuminates an object to be imaged. Fig. 3.1 illustrates a
biological sample illuminated in raster-scanning mode. The MCF fea-
tures a double cladding that collects a fraction of the re-emitted light
(either at other wavelengths by fluorescence or by simple reflection)
and returns it to a highly sensitive (single-pixel) detector. The light inte-
grated by this sensor represents a complete projection of the illumina-
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tion on the object.

The model y = a*Z[f]a presented in (3.1) will arise naturally from
this sensing scheme. The interferometric matrix Z will originate from
the interfering light waves emitted by all the cores, the sketching vector
« will somehow be related to the way light is injected into the cores to
modulate the illumination, and the single measurement will obviously
come from the integration of the backscattered light into the single-
pixel detector. This anticipated correspondence between the sensing
scheme and the mathematical model will be derived in Sec. 3.2.

Even though the mathematical quantities involved in the sensing
model can be applied to other modalities, we will stick to the MCF con-
text in this chapter to keep the physical intuition along the derivations.

3.1.2 Related Work

Before detailing the elements of our approach, we find it useful to men-
tion a few related works, showing how they inspired us, and stressing
their connections and differences with our contributions.

Sensing Model

Rank-one projected interferometric sensing bears similarities to quadratic
measurement models such as Phase Retrieval (PR) [Fie82; BCL02] whose
sensing is often recast as SROPs of the lifted matrix xx* of the (vec-
torized) image x. Theoretical guarantees for the recovery of low-
complexity matrices (e.g., sparse, circulant, low-rank) from random
ROPs have been studied extensively in the last decade [CCG15; CZ+15;
SH17]. The symmetric nature of the sensing yields a bias in the mean
of the sensing operator. Compensation of this bias is critical for image
recovery. A debiasing technique consisting of doubling the number of
measurements is proposed in [CCG15]. Our sensing model computes
SROPs of an interferometric matrix built from spatial frequencies of the
image. This has similarities to random partial Fourier sensing in com-
pressive sensing (CS) theory [CRT06a; FR17; AGH14]. The nuance with
respect to interferometric sensing is that with general partial Fourier sam-
pling, the Fourier transform f of the image is not necessarily sampled
at locations that come from a difference set, so these samples do not
always write in a Hermitian matrix. Finally, the nonuniformity of the
Fourier sampling comes from the nature of the difference set. The sam-
ples tend to be concentrated at lower frequencies, so as Variable Den-
sity Sampling (VDS) strategies [KW14; PVW11]. However, the results of
VDS are out of the scope of this chapter.
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MultiCore Fiber Lensless Imaging

In 2008, Duarte et al. introduced single-pixel imaging [Dua+08; Tay+22],
a subfield of lensless imaging (LI) where each collected observation
is equivalent to randomly modulating an image before integrating its
intensity. They demonstrated that reliable image estimation is possi-
ble at low sampling rates compared to the image resolution by using
compressive sensing. More recently, this principle has been integrated
into the use of an MCF for both remote illumination and image collec-
tion. This technique allows both deep and large FOV imaging [Siv+16;
Siv+18a; Gué+22]. Subsequent works have shown that unstructured
speckle-based illumination can effectively replace structured or beam-
formed illumination [Car+18; Gué+22].

MultiMode Fibers (MMF) [KH66] compete with MCFs in all the cited
applications of MCFLL In fact, both concepts are getting exploited in
a hybrid way [Du+22]. Speckle-based imaging is also possible with
MMFs, with the interferences occurring between the modes instead of
the cores [Bou+23; Loc+23].

In MCFLI, the spatial frequencies in the interferometric matrix cor-
respond to the difference of the MCF core positions. The interferometric
view also leads to the fundamental Abbe diffraction limit [AB20], deter-
mined by the light wavelength, the distance between the diffracting
sources and their number. An interferometric sensing arises in radio-
interferometric astronomy applications where, as induced by the van
Cittert-Zernike theorem (see (4.6)), the signal correlation of two antennas
gives the Fourier content on a frequency vector (or visibility) related to
the baseline vector of the antenna pair [Wia+09]. One may recognize
in [VWSI19, Sec. 4.1.] the RS mode described in Sec. 3.2.2. However, in
these works the presence of an interferometric matrix (seee.g., [VWS19,
Eq. (15)]) is often implicit, since, in contrast to our scheme, no linear
combinations of these visibilities are computed.

The 8-step phase-shifting interferometry [CLY04] calibration technique
(see Sec. 3.5.2) is used in, e.g., astronomical imaging [Rab+06], and mi-
croscopy [Man+22]. The estimated complex wavefields implicitly en-
code the transmission matrix of the MCF (see [Siv+18b]) and also em-
bed some unpredictable imperfections in the MCF configuration. Com-
pared to previous work [Gué+22], where each speckle generated by a
random SLM configuration had to be a priori recorded, this calibration
is done only once before each acquisition.
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3.1.3 Chapter Contributions

We provide several contributions to the modeling, understanding, and
efficiency of MCFLI. The two following paragraphs present contribu-
tions to the modeling.

Interferometric analysis of MCFLI: Incorporating the physics of
wave propagation, we leverage a speckle illumination model to high-
light the interferometric? nature of the MCF device. The resulting ap-
proach, which is new compared to [Gué+22], corresponds to applying
symmetric rank-one projections, or SROP?, to an interferometric matrix
encoding the spectral content of the image. The SROP being controlled
by the SLM, we can model the speckles in the sample plane from the
random complex amplitude of each core, without assuming Gaussian
distributed speckle illuminations [Gué+22].

Efficient SROP debiasing: As explained in [CCG15], SROP sensing
must be debiased to allow for signal estimation. This is usually done
by doubling the number SROP measurements and computing non-
adjacent consecutive SROP differences. By considering sketching vec-
tors with unit modulus (but random phases), we propose a more ef-
ficient debiasing that simply centers the measurements without dou-
bling their number; a definite advantage when recording experimental
measurements.

Rank-one projected interferometric sensing: We provide formal re-
covery guarantees. Following CS theory, we study a novel sensing
model, the rank-one projected interferometric sensing of a sparse image
(see also Fig. 3.3), providing a simplified framework for MCFLI. The
theoretical analysis provided in Sec. 3.3 has thus an independent inter-
est, the combination of SROPs with a partial Fourier sampling scheme
having not been considered previously in the literature. Specifically,
from a set of simplifying assumptions, we show that, with high proba-
bility (w.h.p.), one can robustly estimate a K-sparse image (in the canon-
ical basis) provided that the number of SROPs M and the number of
core pairs Q(Q — 1) are large compared to O(K) (up to log factors).
Our analysis relies on showing that, if the partial Fourier sampling

2“Interferometry is a technique which uses the interference of superimposed waves
to extract information” [Wik].

3The ROP terminology was introduced when [CZ+15] extended phase retrieval ap-
plications [CCG15; Canl1] to the recovery of a low—(but not necessarily one)—rank
matrix via rank-one projections.

70 |



Introduction | 3.1

provided by the cores positions satisfies the classical restricted isom-
etry property, it can be associated with a statistical concentration of the
SROP measurements to show that, w.h.p., the sensing operator satisfies
(a variant of) that restricted isometry property which enables us to es-
timate a sparse image with (a variant of) the basis pursuit denoise pro-
gram. The number of measurements M is thus reduced compared to
recovering first the interferometric matrix with O(KQ) measurements,
before estimating the object from this matrix (see Sec. 3.3.1). The overall
sample complexity with speckle illumination [Gué+22] is also reduced
compared to Raster Scanning (RS) the object with a translating focused
(beamformed) spot [Siv+16]. The sample complexities derived theoret-
ically are verified in Sec. 3.4 with extensive Monte Carlo experiments
in a numerical setting

Simplified calibration: In Sec. 3.5, we propose a single-step cali-
bration procedure encompassing most sensing imperfections in a real
setup, at the exception of intercore interferences. This calibration,
which only requires registering the cores locations and imaging depth,
enables us to predict speckle illumination from the programmed SLM
configuration (reaching 97% of normalized cross-correlation). Com-
pared to [Gué+22] that needed to prerecord the M generated speckle
patterns for imaging, we need O(Q) observations for a Q core MCF to
accurately model of these M patterns.

Experimental results made on an actual MCF system demonstrate
the effectiveness of this imaging procedure on a benchmark image.

3.1.4 Notations Specific to this Chapter

In this chapter, we are interested in recovering continuous 2-D images.
Where x is reserved for the 2-D position in the image plane R?, f will
denote the discrete image we seek to recover. The MCFLI application
will induce a limited field-of-view, represented by a vignetting function
w(x). The vignetted image is written as f° := wf.

For the guarantees provided in Sec. 3.3, a debiasing procedure will
be needed. The main operation associated with this debiasing consists
in centering the measurements as well as the forward SROP operator.
To this aim, we write the average vector of a vector u € RN:

=
o
|
—
Z|=
1=

Ui
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and the average matrix of a set of matrices {A,, }M

M
A=Y Ay
m=1

For either a vector u or a matrix A (taken from a collection of matri-
ces {A }M ), its centered version is obtained by subtracting the average
fromit, i.e.,
u =u—u
and
A=A — A%
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3.2 Sensing Model

We develop here the sensing model associated with an MCF lensless
imager (MCFLI) under the same speckle imaging conditions as pro-
vided in [Gué+22], i.e., interfering coherent light components output by
the cores of the MCF with random relative delays. As shown in Fig. 3.2,
an MCFLI consists of four main parts: a wavefront shaper (SLM), op-
tics, an MCF, and a single photodetector. The SLM shapes the phase of
the light injected into the cores. The optics include mirrors and lenses
used to focus the light into the center of each core, thereby preventing
multimodal effects.

As explained below, under a common far-field assumption, the
MCFLI can be described as a two-component sensing system apply-
ing SROP of a specific interferometric matrix. We show how this model
subsumes previous descriptions of the MCFLI. For the sake of proof-
of-concept experiments, we also highlight that the SROP and interfero-
metric nature of the model hold beyond the far-field assumptions. Fi-
nally, this section concludes with two views of the model when the
image of interest is discretized—along with their computational com-
plexities. A symmetric discrete model is presented to explain the inter-
ferometric matrix.

3.2.1 Rethinking MCFLI with Fourier Optics

An MCF with diameter D contains Q fiber cores with the same diameter
d < D (see Fig. 3.2). Our goal is to observe an object (or sample) which,
for simplicity, is planar and defined in a plane Z. This plane is parallel
to the plane Z, containing the distal end of the MCF, and at distance
z from it. For convenience, we assume that the origins of Zy and Z
are aligned, i.e., they only differ by a translation in the plane normal
direction. In Zj, the Q cores locations are encoded in the set () :=
{p q}qul C ]Rz'

As illustrated in Fig. 3.2 (and detailed in Sec. 3.5.1 and [Siv+16]),
in MCFLI the laser light wavefront entering the MCF is shaped with a
spatial light modulator (SLM) so that both the light intensity and phase
can be individually adjusted for each core at the MCF distal end. Math-
ematically, assuming a perfectly calibrated system, this amounts to set-
ting the Q complex amplitudes & = (ay, ..., ocQ)T € C9, coined sketch-
ing vector, of the electromagnetic field at each fiber core g € [Q] located

atp_.
q
Under the far-field approximation, that is if z > D? /A with A the laser
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Fig. 3.2 MCFLI and its link with SROP of the interferometric matrix.

wavelength, the illumination intensity S(x; «) produced by the MCF on
a point x € R? of the plane Z reads [Gué+22]

27T, 2 E LZ
S(x;a) ~ w(x) |ZL7Q:1 age =P % |7, w(x) = | (OA(Z/\)Z)I (3.2)

The window w(x), which relates to the output wavefield Ej of one sin-
gle core in plane Zj, is a smooth vignetting function defining the imag-
ing field-of-view. Assuming Ej shaped as a Gaussian kernel of width
d, the FOV width scales like 4%.

The sensing model of MCFLI is established by the following key
element: in its endoscope configuration, the sample is observed from
the light it re-emits (by fluorescence) from its illumination by S, and for
each configuration of S a single pixel detector measures the fraction of
that light that propagates backward in the MCF (see Fig. 3.1). There-
fore, given the sample fluorophore density map f(x), assuming a short
time exposure and low intensity illumination, fluorescence theory tells
us that the number of collected photons y € R follows a Poisson dis-
tribution P (i) with average intensity [Gué+22]

7(fia,Q) s = c(S(a), f) = C/IRZS(x;a)f(x) dx (33)

2n —pP; o
:Czj?kzl o g Jr2e€ ™ (px—p;) £o(x) dx,

where 0 < ¢ < 1 represents the fraction of light collected by the pixel
detector, and f° := wf is the vignetted image, i.e., the restriction of f to
the domain of the vignetting w.

Therefore, assuming ¢ = 1 for simplicity, if one collects noisy ob-
servations y = (y1,...,ym) ', such that 7, = 7(f; am, Q) with distinct
vectors &, (m € [M]), we can compactly write

I = ay Zalf | an = (amasy, Lalf])y (34)
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where (A, B)r = tr A*B is the Frobenius scalar product between two
matrices A and B. This amounts to collecting M sketches of the hermi-
tian interferometric matrix Zq[f°] € HC, with entries defined by

Tx

(Zalg) = 81E2E] = [rae™ PP) *g(x)dx, (3.5)

for any function g : R? — R. Under a high photon counting regime,
and gathering all possible noise sources in a single additive, zero-mean
noise n, the measurement model reads

y=AoZn[f°] + n, (3.6)

where the sketching operator A defines M SROP [CCG15; CZ+15] of any
Hermitian matrix H € HC with

A(H) = ({amaty, H)E) - (37)

The resulting sensing model is summarized in Fig. 3.3.

Fig. 3.3 Representation of the sensing model (3.4). The Fourier transform of the
vignetted signal f° := wf is first sampled on the frequencies of the difference set
V= % (2 — Q). This Fourier sampling is illustrated by restricting the FFT F of the
discretized vignetted signal f with Ry,. Next, these samples are shaped into an (her-
mitian) interferometric matrix Zn[f°] € HQ. Finally, M SROPs of this matrix are

M

collected from i = ()M := (a}, T [f°)am) ;.

From (3.6), MCFLI corresponds to an interferometric system that is
linear in f°. Eq. (3.5) and (3.7) show that it is indeed tantamount to first
sampling the 2-D Fourier transform of f° over frequencies selected in
the difference multiset*, or baselines,

Vi= L(Q-0) = {vy:= 48, (3.8)

ie, (Zalf°])ix = FIf°](vjk), and next performing M SROP of Zq[f°]
with the rank-one matrices a,,«;, as determined by .A.

Interestingly, the model (3.6) shows that we cannot access more in-
formation about f° than what is encoded in the frequencies of V—
the visibilities. Moreover, this sensing reminds the model of radio-
interferometry by aperture synthesis [Wia+09]—each fiber core plays

4The elements of a multiset are not necessarily unique.
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somehow the role of a radio telescope and each entry of (Zq[f°])j
probing the frequency content of f° on the baseline® vj.
Assuming we collect enough M SROP observations, we can poten-

tially estimate the interferometric matrix Zq[f°], which in turn allows
us to estimate f° if V (with |V| < Q(Q — 1) /2) is dense enough.

)

Fig. 3.4 Possible arrangements () of the cores (top) and their corresponding Fourier
sampling V (bottom). (a) Regular, (b) Azimuthal, (c) Radial, (d) Fermat’s golden spiral
(Our choice in this work), and (e) Random gaussian.

Figure 3.4(top) shows possible designs for the arrangement of the
cores, and Fig. 3.4(bottom) shows their corresponding Fourier sam-
pling. The regular grid in (a) represents the worst design. Due to their
redundancy, a lot of baselines end up at the same Fourier location. The
spectral content is also sampled on a regular grid with a small density.
The azimuthal and radial arrangements (in (b) and (c) respectively) im-
prove the sampling. Their drawbacks are: (i) the too small distance be-
tween the central cores, (ii) the uneven sampling of the high frequency
content, and (iii) the waste of spatial room in the fiber section to place
more cores. The inter-core distances must actually be above a threshold
value set by the tolerances on the cross-talk between the cores [And+13].
Actually, the Fermat’s golden spiral distribution ) of the cores depicted
in Fig. 3.4(d)—initially studied for its beam forming performances in
MCEFLI by raster scanning [Siv+16] (see below)—displays good prop-
erties. For this arrangement, conversely to regular lattice configura-
tions, all (off-diagonal) visibilities are unique, i.e., |V| = Q(Q —1)/2.
The random gaussian arrangement in Fig. 3.4(e) provides a nice gaus-
sian Fourier sampling, close to the theoretical setting considered in VDS
[KW14]. However, it shares the same disadvantages (i) and (iii) as for
(b-c) designs.

5The word “baseline” being actually borrowed from this context.
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3.2.2 Connection to Known MCFLI Modes

The MCFLI model subsumes the Raster Scanning (RS) and the speckle
illumination (SI) modes introduced in [Siv+16; Gué+22]. We start this
section with a short overview of the two principles, then more mathe-
matically explain them into the MCFLI formalism.

[ Raster Scanning \
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Fig. 3.5 Illustration of the RS and SI principles.

Figure 3.5 depicts the functional principle of the Raster-Scanning and
Speckle Illumination approaches. In RS, in Fig. 3.5(top), a centered fo-
cused beam is obtained by setting a flat phase profile at the output of
the MCE. This way, the light waves emitted by the cores will interfere
constructively at the center of the image plane, and destructively else-
where. The focused location is shifted by tilting this phase profile. One
observes the peripherical illuminated spots, showing the focus is im-
perfect with a limited number of cores, especially near the edges of the
image plane. A blurred image is obtained by raster-scanning the fo-
cused location along a trajectory sufficiently dense compared to the tar-
get resolution. In SI, in Fig. 3.5(bottom), a collection of speckles are ob-

tained with random realizations of the sketching complex amplitudes
.

Raster scanning mode In the RS mode, the light wavefront is shaped
(or beamformed) with the SLM to focus the illumination pattern on the
sample plane, while galvanometric mirrors translate the focused beam
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by phase shifting, hence ensuring the final imaging of the sample by
raster scanning the sample and collecting light at each beamed position.
A beamformed illumination is equivalent to seta = 1 = (1,..., 1)T
in (3.2).

In this case, the illumination intensity S corresponds to

i2n

9 127 T 2 X 2
S(x1) ~w(x) [} e =P = w(x)| Flgpa(3)]
q=1

, 3.9)

where ¢q is the array factor of the core arrangement (), with, for any
finite set S C R?, ¢ps5(p) := Lyes(p — p'). Expanding (3.9), we also
note that X

(Flpa(I" = Flov] (). (3.10)

Arranging the core locations as a discretized Fermat’s spiral was
shown to focus the beam intensity on a narrow spot whose width
scales like % [Siv+16]. This is induced by the constructive interferences
in (3.9) around x ~ 0—other locations being associated with almost de-
structive interferences.

The two galvanometric mirrors adapt the light optical path of the
beam according to a tilt vector 0 € R? [Gué+22], i.e.,  is set to

Yo := (exp(— ii—ZGTloq))qQ:1 and (3.2) provides

S(x;v9) ~ w(x)Top(x), Tog(x) := ¢(x — 0),

ie., ¢ := F|py](x) is translated by 6. We can also write, from the sym-
metry of ¢,

o = (S(ve), f) = (Tog, f°) = (¢ x £°)(6), (3.11)

with * the 2-D convolution. Therefore, by defining a raster scanning
path ® C R? for 0 sequentially visiting all positions in a given 2-D
domain within a certain resolution, we see that by collecting all RS ob-
servations we image a blurred version (by ¢) of f° over ®. The RS
mode is thus characterized by the sketching vectors a € {7y, : 0 € O}.

Moreover, by considering the model (3.4) and the multiset Vy :=
{vik - j,k € [Ql,j # k} that removes the Q occurrences of the zero
frequency from V, for 6 = 0,

Jo =1 Za[f]1 = Tyey fo[v] = QF°[0] + Tyey, foV]-

This shows that iy probes the content of f° around the origin if the
multiset 1y is dense enough over the support of f° with distinct fre-
quencies; in this case yo — Qf°[0] = Y, ¢y, f°lv] = cf°(0), for some
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¢ > 0. In this context, the narrowness of the focus relates to the density
of Vy. Moreover, (3.4) and (3.5) provide

To = voZalf)ve =1'Za[T-of]1

for any tilt 8, meeting the convolution interpretation in (3.11).

Despite its conceptual simplicity, the RS mode has a few drawbacks
[Gué+22]: (i) it requires as many illuminations as the target image res-
olution; (i1) due to limited MCF diameter and the chosen core arrange-
ment, the related convolution kernel ¢ is actually spatially varying (as
seen in Fig. 3.5(top)), which limits the validity of (3.11).

Speckle Illumination mode In the SI mode, the sample f is illumi-
nated with random light patterns called speckles. These are generated
with random core complex amplitudes a. Conversely to the RS mode,
by recording all speckles illuminations at calibration, SI does not re-
quire to know the MCF transmission matrix [Siv+18b].

One can interpret SI as a compressive imaging system [CRT06b;
CWO08; JV10]. By considering that both f and each illumination inten-
sity S(x; &) are discretized and vectorized as f € RN and s € RV,
respectively, and gathering in a matrix S := (s, ...,sy) € RV*M the
M discretized speckles obtained from the sketching vectors {a, }M_,
the model (3.6) becomes

Un=syf, me[M], orjg=S"fecRM (3.12)

If M is adjusted to the sparsity level of f (with M < N), the recovery
of f from y becomes a classical compressive sensing (CS) problem with
the sensing matrix S.

To characterize the properties of the sensing model (3.12) in this
CS framework, the authors in [Gué+22] propose to first to center (or
debiase) this model by computing y° = y — y*1); with the measurement
average y® := % Zinl y; (we reinterpret this operation in Sec. 3.3.3).
This provides, from (3.12), the model

y© = VM®Sf + nS, (3.13)

with a centered noise n° := n — (& Z]-Ail nj) 1y, VM® = DS'5 ' and
the debiasing matrix D := (Iy —3;1m1y,), S := diag(s) € RV*N, and
§ := Egs. The map Sf relates to the discretization of the vignetted
image f° defined above.

The debiasing above allowed the authors of [Gué+22] to hypoth-
esize that ® satisfies the Restricted Isometry Property (RIP), a crucial
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property in the classical CS problem [CRT06b] ensuring the success
of recovery procedures such as the basis pursuit denoise program (see
Sec. 3.3). SI both improves the quality of the reconstructed images and
reduces the acquisition time compared to RS. However, the RIP of the
related sensing matrix which relies on specific random speckle config-
urations has not been established, keeping the sample complexity un-
known for stable and robust image recovery. Moreover, in SI mode, we
must prerecord M—object free—illumination speckles to build ®, be-
fore observing the sample in the imaging plane with the same speckles.

3.2.3 Generalized MCFLI Sensing

We can extend the MCFLI model (3.4) beyond the far-field and iden-
tical core diameter—but still no crosstalk—assumptions by replacing
the interferometric matrix Zq[f°] with a more general matrix function

Z3lf]
Given the wavefield E;(x) of the g-th core of the MCF in the plane
Z, the illumination reads

S(x; ) := }Z?Zl agEq(x)
and similar developments to Sec. 3.2 provide
In = a3 Glf] wm = (anas, TG[f]) (3.15)

where we defined, for any function 4 : R? — R, the Hermitian matrix
ZG[h] € HQ with entries

(ZQ)klH) = [go E} (x) Ex(x)h(x)dx. (3.16)

2

, (3.14)

By recording a spatial discretization of the fields {Eq(x)}ff:l,
thus estimate the forward model (3.16)—and thus

HN = (af, TG[H] )Y, —for any function h, as imposed to solve the
inverse problem (3.15) with practical algorithms. While slower than
the computation of Z[f°] (e.g., with a FFT boosting) and its M SROP,
estimating ‘H directly integrates many deviations to the interferometric
model, with a calibration limited to the observation of O(Q) discretized
spatial intensities aimed to yield {E,(x) }qQ:l. We detail in Sec. 3.5.2 how
to practically achieve this calibration.

we can

3.2.4 ROPI: the Subsequent Discrete Model

In this section, we analyze what happens to the sensing model (3.4)
when the vignetted image f° is discretized. The major model change
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will occur for the interferometric matrix Zn. The derived discrete-to-
discrete model, coined Rank-One Projected Interferometric (ROPI) imag-
ing, is presented in a general setting, not necessarily considered in the
MCFLI framework anymore.

Without loss of generality, the following derivations will be pre-
sented for a 1-D analog of (3.5), and A = z = 1 to simplify the notation.
The image is assumed to have a bounded field-of-view, i.e., it is contained
in a domain [0, NA) with A being the spatial resolution of the upcoming
discrete image. Additionally, the image is assumed to be bandlimited,
ie., fo(k) = 0 for |k| > 7t/A (we will come back to this assumption in
Sec. 3.3.2). The jk-th entry of the simplified interferometric matrix writes

Dk = / £ (x)e 2 PePix ., (3.17)

Consider the spatial discretization III : f° € R +— f € RN which yields
a discrete image as f := {f°[n], n € [N] C Z} with

feln] = f(nd) = f°(x) ) 6(x —nh). (3.18)

Substituting (3.18) into (3.17) gives

(ZalfDjx =4 Z fe[n]e 127 pi=pina (3.19)

Bilateral form In order to factorize Z[g] in a symmetric discrete
form, the trick consists in inserting Zﬁf;é S = 1 into (3.19) so as to

get

N-1
(Zalfj =40 Y, e fo[n]6,,e P = e, FDfF*ep,  (3.20)

n,n'=0

with e, € {0,1}¥N the basis vector nonzero at index piNA, F the dis-
crete Fourier transform (DFT) matrix (here implicitly including the scal-
ing constants v'NA), and Dy = diag(f) the diagonal matrix filled with
f. Eq. (3.20) is valid for the particular case when the cores locations are
on-the-grid—an assumption made in Sec. 3.3.2 with 3.3.
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Remark 3.1. Imposing the cores locations to be on-the-grid is unneces-
sary to get a symmetric discrete model. In the case of off-grid locations,
the selection basis vectors ey, will be replaced by interpolation kernels
which help approximating the off-the-grid DFT. These kernels, which
correspond exactly to the Non-Uniform FFT (NUFFT), will appear in
Chap. 4.

At the end, the matrix can be written as

T
epl

Iolfl=| : | FDfF* [ep, --- ep,| = WFD/F'W". (3.21)
T
€po
Eq. 3.21 also shows that if f is K-sparse, the interferometric matrix
Zq[f] is rank-K. In a discretized version, the noiseless measurement
model in (3.4) boils down to the form

7= a«*WFDF*W*n (ROPI)

with y the single measurement, « the controllable sketching vector, and
W e o eg)

In (ROPI), J := FDF" is by definition a circulant matrix with Ji; =
(F*f) jk—1/y with /k —1/Nn := k — I mod N. In other words, the vector
F* f is repeated in each row of J with a “one-index” shift between each
row. The pure conjuguate symmetry of Z[f] (illustrated in Fig. 3.3)
now clearly appears from the identity Zn[g]* = (WFDsF*W*)* =
WFDF*W* = Zq|[g] (valid only for a real image f € RY).

Interestingly, the Fourier sampling encoded in W are only param-
eterized by the cores locations (). This indicates that a denser Fourier
sampling would be reachable if the cores could be moved. Unfortu-
nately in MCFLI, () is fixed by the design of the cores arrangement.
However, this is not true for all applications. This observation will be
key for the radio-interferometry context covered in Chap. 4.

Gathering the M measurements in a vector gives the bilateral sens-
ing model

j = diag (AWFDF*W*A*) (3.22)

*

with A := (&1,...,apm)*.

Unilateral form Going back to (3.19), the jk-th entry could have been
written as

(ZalfD)jx = ey, Ff-
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Consequently, a vectorized form of the interferometric matrix is
vec(Zqalf]) = GFf (3.23)

with the Fourier sampling matrix G := (ep, — ep,, Vj k € QD). This
yields a unilateral sensing model

y = RGFf, (3.24)

with each line of the matrix R computing a single SROP measurement,
ie, (R"), = vec(anas,)’, VYm € [M]. The bilateral and unilateral
forms of the sensing model are mathematically equivalent. Actually,
their equivalence is linked to the observation (3.10) that we made ear-
lier in the continuous domain. In the next section, we compare them in
a computational complexity point of view.

3.2.5 Computational Complexity

Table 3.1 reports a comparison of the complexities of the bilateral (3.22),
unilateral (3.24), and SI (3.12) sensing models. The SI model will be
of particular interest for its use in the experimental reconstructions
of Sec. 3.5 from a calibration phase exploiting (3.14) and described in
Sec. 3.5.2. It must be noted that the forward model is usually computed
hundreds to thousands of times in proximal reconstruction algorithms,
so the true cost is more than two orders of magnitude higher the nu-
merical values provided in Table 3.1.

For a fair comparison of the computational costs, we provide an or-
der of magnitude of the quantities involved for the MCFLI application:
the image resolution is N = 10°, the number of cores is Q = 120, and
the number of measurements is M = 1000.

Table 3.1 Complexities of the sensing models for MCFLI.

Name Model Complexity O Value
Bilateral | diag (AWFDF*W*A") MNlog N + MQ 10™
Unilateral RGFf MQ?+ Q?N + NlogN | 10
SI Sf MN 10°

For the bilateral model, the complexity is computed from right to left
with W*A* costing only O(MQ) (since W is just a selection matrix),
then M FFTs are taken in O(MN log N), applying D costs an element-
wise product in O(N), then the symmetrical operations keep the same
complexity. The complexity of the unilateral model is also computed
from right to left.
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In Table 3.1, the bilateral model appears to cost O(MNlogN) =~
10'°. For the unilateral model, the most costly operation is the compu-
tation of the visibilities with G in O(Q?N) ~ 10'° operations. Omitting
the calibration phase, the SI model used for the experimental recon-
structions is the fastest.

It is worth mentioning that ROPs of a circulant matrix can be fac-
torized as a projection of the Fourier transform Ff of the image with
autocorrelations of the vectors W*w«. But this fact does not improve the
complexities mentioned above.
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3.3 Recovery Guarantees

This section starts with a short analysis of the best sample complexities
foreseeable for the recovery of the intermediate interferometric matrix.
Then, formal image recovery guarantees are provided up to the use of
6 motivated assumptions for the theoretical setting. The main achieve-
ment of this is Prop. 3.2 proving we can compute a stable and robust
estimate from the sensing setting present in Sec. 3.2. Moreover, the as-
sociated sample complexity is optimal.

3.3.1 Interferometric Matrix Reconstruction

It is possible to recover the interferometric matrix Z, from its SROPs y,
which allows subsequent image estimation from this matrix. However,
as will be shown below in Th. 3.1, this procedure provides a subop-
timal sampling complexity compared to the direct sensing approach
(combining SROPs and interferometric sensing) proposed in Sec. 3.3.

With Prop. 3.1, we first show that O(Q?) deterministic sketching
vectors suffice to reconstruct any interferometric matrix Zq, in a noise-
less scenario—corresponding to its intrinsic complexity. This provides
an upper bound on the sampling complexity for further compression
measurements of this matrix.

Proposition 3.1. There exists a set of M = Q(Q — 1) + 1 sketching

vectors {txm}n]\f:1 € CC such that any Hermitian matrix T € H°
with constant diagonal entries can be reconstructed from the M sketches
Ym = &y Loy,

Proof. Given the 2-sparse sketching vectors a.(q,7) := e, + ye;, with
q,7 € [Q], |7] = 1 and the s-th canonical vector e;, we have

holg,r] == ol (9,1 Zaq(q,7) = Tog + Loy + YLgr + YLy = %trI +2R{VZ,, }.
Therefore,

g, r)+ihoi[g,r] = 2Ty, + (1 +i) e T. (3.25)

From the Q(Q — 1) sketching vectors {a,(q,7) : 1 < g <r < Q,v €
{1,-i}} C C9, the value 2R{H} = H + H* computed from the sum
H = Ycg<r<o(Mlqr] +1ih_i[q,7]) respects

R{H} =Y, L+ (Q-1)r T =1"T14 (Q—2)trZ.
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Using the additional unit sketching vector 1 thus recovers tr Z—and
all constant diagonal entries of the Hermitian matrix Z—from R{H?},
and (3.25) provides all its off-diagonal entries. Overall Z is thus recov-
ered from 1+ Q(Q — 1) measurements. O

Recovering Zq in less than O(Q?) SROP is possible if this ma-
trix, and thus f, respects specific low-complexity models. First, Zy :=
Zn[f°] is Hermitian. Moreover, if f° is non-negative, this matrix is pos-
itive semi-definite since from (3.5), for any v € C%,

v"Zov = [ra f°(x) Ejk U;kae%(pkfpffxdx
= Jre f*(x)[0*p(x)|?dx > O,

where p = (p1,...,pg) € CQ with pj(x) := e R,

(3.26)

Second, if f° is composed of a few Dirac spikes, i.e., if f°(x) =
YK uid(x — x;) for K coefficients and locations {(u;, x;)}X ,, the inter-
ferometric matrix has rank-K since (3.5) reduces to the sum of K rank-
one matrices, i.e.,

Zalf] = Ly uip(xi)p” (x:). (327)

Under this structural assumption, or if Z is well approximated by a
rank-K matrix (Zy)k, we can recover Z, with high probability provided

the sketching vectors {am}%zl, and thus A, are random, i.e., their en-

tries are i.i.d. from a centered sub-Gaussian® distribution [CCG15, Thm
1].

Theorem 3.1 (From [CCG15]). With
M > My = O(KQ), (3.28)

and probability exceeding 1 — exp(—cM), any matrix Lo observed
through the model y = A(Zy) + 4, with bounded noise |51 < ¢,
can be estimated from

Z cargmin |Z|. st. =0, |ly—AZ)|h1 <e
z

This solution is instance optimal, i.e., for some C,D > 0,

|Z — Zo|le < clB=t20kl 1 pg. (3.29)

6The probability distribution of a random variable X is called sub-Gaussian if there
is a positive constant C such that for every t > 0, P [|X]| > t] < 20— /C
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The sample complexity in (3.28) is, however, not optimal since
for a K-sparse f°, Iy depends only on O(K) parameters in (3.27).
While [CCG15] provides similar results with reduced sample complex-
ity provided Z is, e.g., sparse or “Toeplitz low-rank”, these models are
not applicable here and we show in Sec. 3.3 that a smaller sample com-
plexity is achievable under certain simplifying assumptions.

Image Reconstruction

Let us consider a compressive sensing framework whose objective is to
explore the imaging capability of MCFLI, i.e., we study the problem of
directly estimating sparse images from their rank-one projected inter-
ferometric sensing, as driven by the two sensing components in (3.4).
As proved in Sec. 3.3.4, from simplifying assumptions made on both f°
and the sensing scenario (see Sec. 3.3.2), this method achieved reduced
sample complexities compared to the approach in Sec. 3.3.1, which are
also confirmed numerically in Sec. 3.4.

3.3.2 Working Assumptions

We first assume a bounded field of view in MCFLI.

Assumption 3.1 (Bounded FOV). The support of the vignetting win-
dow w(x) in (3.2) is contained in a domain D := [—L/2,L/2]* with
L := %2, for c > 0 depending on the (spectrum of the) output wavefield
Eoin (3.2), and w = 0 on the frontier of D.

Therefore, supposing f bounded, we have supp f° C D and f° = 0
over the frontier of D.

We also need to discretize f° by assuming it is bandlimited.

Assumption 3.2 (Bounded and bandlimited image). The image f
is bounded, and f° is bandlimited with bandlimit %, with W = %
and Ny € N, i.e., F[f°](x) = 0 for all x with ||x|| = %

As will be clear below, this assumption avoids spectral aliasing dur-
ing discretization and thus enables the computation of the interfero-
metric matrix Zq[f°] from the discrete Fourier transform of the follow-
ing discretization of f°.

From Assumptions 3.1 and 3.2 the function f° can be identified with
avector f € RN of N = N? components. Up to a pixel rearrangement,
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each component f; of f is related to a specific sample of f° taken in the
N-point grid.
Ny

g(Nl,Nl) = NLl { (Sl’ 52) }zsz—*T

-1
© ., CD.

The Discrete Fourier Transform (DFT) f of f is then computed from the
2-D DFT matrix F € CN*N, e, f = Ff € CN, F := F; ® Fy, with

_ien
(Fi)gy =e ™ kl/\/N , k,1 € [N1], and the Kronecker product ®. Each
component of f is related to a 2-D frequency of

A &_1
Ginny) = Nﬂl{(xl,xz)};lx y C 4,1,

2

We now need to simplify our selection of the visibilities.

Assumption 3.3 (Distinct on-grid non-zero visibilities). All non-
zero visibilities in Vo = V' \ {0} belong to the regular grid Gy, ny), i-e.,
Vo C Q(N],N]), and are unique, which means that |Vo| = Q(Q —1).

Anticipating over Sec. 3.3.4, assumptions 3.1 and 3.2 show that
Za[f°] can be computed from Ff; remembering the unilateral model
(3.23) for the interferometric matrix, vec(Zq[f]) = @GF f where @ :=
\?—% (valid for 2-D signals) can be found from the continuous interpola-
tion formula of the Shannon-Nyquist sampling theorem. Consequently,
if f° has zero mean, (Ff)o = 0 and G = Ry; , yielding

s Zalflllf = Zllvee(ZalfDI? = IRy EfI?,  (3.30)

with Rg = I the restriction operator defined for any S C [N], and V
the index set of Ff related to the off-diagonal entries of Z[f°] (with
Vol = |Vo| from 3.3). One has Vo = {I(j,k) : j,k € [Q],j # k} C [N]
with [ = [(j, k) € [N] such that (Zq[f°]);x = (vecZa[f])r.

We need to regularize the (ill-posed) MCFLI imaging problem by
supposing that f is sparse in the canonical basis.

Assumption 3.4 (Sparse sample image). The discrete image f is K-
sparse (in the canonical basis): f € X := {v : ||v|o < K}.

While the provided guarantees are restrictive, our experiments in
Sec. 3.5 show experimentally that other sparsity priors are compatible
with our sensing scheme, e.g., the TV norm. A theoretical justification
of such possible extensions is challenging with the current literature.
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Our theoretical analysis leverages the tools of compressive sensing
theory [CRT06a; FR17]. In particular, as stated in the next assumption,
we require that the interferometric matrix—actually, its non-diagonal
entries encoded in the visibilities of Vy—captures enough information
about any sparse image f.

Assumption 3.5 (RIP, /,, for visibility sampling). Given a sparsity
level K, a distortion 6 > 0, and provided

Vol = Q(Q — 1) > 6 *Kplog(N, K, 6), (3.31)

for some polynomials plog(N, K, 1/5) of log N, log K and log 1/, the
matrix ® = \/NRVOP respects the RIPy, /¢, (Xk, ), i.e.,

1=l < pll@vl; < A +9)llv]? Yo e Zx.  (3.32)

As will be clear later, combined with (3.30), this assumption ensures
that two different sparse images lead to two distinct interferometric
matrices, a key element for stably estimating images from our sensing
model (see Prop. 3.2).

We now specify the conditions on the distribution of the sketching
vectors «.

Assumption 3.6 (Random sketches with unit modules). The
sketching vectors {a,, }M_, involved in (3.6) have components i.i.d. as
the random variable « € C, with Ex = 0 and |a| = 1.

The sketching vectors are thus sub-Gaussian, since the sub-Gaussian
norm ||ay|y, = |||a4]lly, = 1is bounded (see [Ver10, Sec. 5.2.3]). While
motivated by the MCFLI application where the SLM mainly acts on the
phase of the core complex amplitudes, this assumption enables a debias-
ing trick, described in Sec. 3.3.3, which simplifies the theoretical analysis
detailed in Sec. 3.3.4.

Rationale and Limitations of the Assumptions

Here we discuss the rationale and limitations of the assumptions. First,
both Assumptions 3.3 and 3.5 are built on the multiset V) (listing all the
non-zero visibilities) and not V. Anticipating over Sec. 3.3.4, this choice
is imposed by the SROP measurements; they are strongly biased by
the diagonal elements of the projected matrices (see also Lemma. 3.1 in
Sec. 3.7.1). As a result, we need a debiased sensing model (see Sec. 3.3.3)

| 89



3 | Rank-One Compression of Interferometric Sensing

removing the diagonal of the interferometric matrix, and hence the zero
image frequency.

Second, while we do not prove that the visibility set V) defined by
the Fermat’s spiral core arrangement () in MCFLI verifies Assump-
tion 3.5, we invoke existing results characterizing compressive sens-
ing with partial Fourier sampling—as established for instance in the
context of tomographic and radio interferometric applications [CW08;
Wia+09]—to prove the existence of a visibility set respecting 3.5. For
example, from [FR17, Thm 12.31], if Q(Q — 1) > C§ 2K log4(N) (for
some constant C > 0) and the set of Q(Q — 1) visibilities Vy are picked
uniformly at random in [N], then ® respects the RIP,, 4, (Xk, d) with
probability exceeding 1 — N— log* N

Third, as stated by Assumption 3.3, our analysis expects that each
visibility, except the 0 frequency, is observed only once. However, for
large values of Q (and certainly when Q(Q — 1) > N), low-frequency
visibilities tend to occupy the same points in the gridded frequency do-
main Q( NN )- For instance, for a 1-D configuration, the pdf of the vis-
ibilities would be centered and triangular—with thus increasing mul-
tiplicity at low-frequency—if the frequencies were drawn uniformly at
random in a given frequency interval.

Relaxing Assumption 3.3 would require adapting our develop-
ments in new directions. To account for possible multiplicities in the
visibilities, we can indeed introduce a weighting matrix W encoding
the number of entries in Z[f°] that are related to the same frequency,
i.e., using the notations defined above, Wy, := [{(j, k) : I(j, k) = g},
1 < g < N. In that case, (3.30) becomes

o2 I ZalfllIE = [IWRy, Ef|.

However, since our analysis requires that |WRy, Ff]||* is approxi-
mately proportional to the norm of || f||? if f is sparse, i.e., the matrix
d = WRy; F should respect the RIP [CRT06b], we then need to adapt
Assumption 3.5 to that matrix. Unfortunately, as soon as W # I, recov-
ering sparse signals from their random partial Fourier sampling im-
poses to reweight ®’ to cancel out the impact of W [KW14; Adc+17],
both for ensuring the RIP of this matrix and for the stability of the nu-
merical reconstructions. Unfortunately, as we only have access to the
SROP of the interferometric matrix, i.e., § = RGFf, introducing this
cancellation in our sensing model is out of the scope of this chapter.
It is briefly discussed in the discussion “weighting the visibilities” in
Sec.4.7.
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Finally, Assumption 3.4 is restricted to sparse signals in the canoni-
cal basis. Generalizing our recovery guarantees developed in Sec. 3.3.4
to general sparsifying bases ¥ # I is challenging and not done in this
thesis. Certain bases, such as the Haar wavelet basis ¥, include the con-
stant vector. Assuming it is in the 1-st column of ¥, we easily check that
the RIPy, /¢, in (3.32) can no longer hold for ® = \/NRVOF‘I’; since V)
excludes the DC frequency, taking v = Ae; + e, € X with a sufficiently
large value A breaks (3.32) as ®v = VN Ry, FY¥ey.

3.3.3 Debiased Sensing Model

As made clear in Sec. 3.3.4, the estimation of f requires a debiasing of
the MCFLI measurements imposed by the properties of the SROP op-
erator A in (3.4). This debiasing requirement can be seen as target-
ting the isotropy property of [CP11]. We follow a debiasing inspired
by [Gué+22] (and allowed by Assumption 3.6), with a reduced number
of measurements compared to the method proposed in [CCG15].

From (3.6), we define the debiased measurements
— 1yvM o,
Y =Ym— =1 Vi = (A%, I)F +ny,
with the centered and the average matrices Aj, = a5, — A* and A® =
& Zj]\il wju;, respectively, T := T[f°], and noise n, := ny — & Z]'I\i1 n;
: 1

with E|nS|? = (1 — %) E|nn|*

Introducing the debiased sensing operator

AT e HO s ((AS, )0 e RY, (3.33)

which respects A°(J) = A°(Jp) with the hollow matrix Jy, 1= J —
J 4 (ie., diag(J 1) = 0) since each Ay, is hollow from Assumption 3.6,
we can compactly write

y© = (v§, ...,yﬁ\/l)T = A%(Zy) + n-. (3.34)

The debiasing model thus senses, through Z}, the off-diagonal ele-
ments of Z[f°]. We will show below that the combination of A with
the interferometric sensing respects a variant of the RIP property, thus
enabling image reconstruction guarantees.

3.3.4 Stable and Robust Recovery

We show now that we can estimate a sparse image f from its sens-
ing (3.34). From Assumptions 3.1-3.6, it can be recast as

Y = B(f) +n, (3.35)
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where the sensing operator BB reads
B:veRN — A (Zp[v]) € RY (3.36)

with Z[v] defined in (3.21). We propose to estimate f by solving the
basis pursuit denoise program with an /;-norm fidelity (or BPDNy, ),
ie.,

f = argminvelRN Hle s.t. Hyc - B(U)H] <€ (BPDNh)

The specific ¢1-norm fidelity of this program is motivated by the prop-
erties of the SROP operator A, and this imposes us to set € > ||n°||;
to reach feasibility. We indeed show below that B, through its depen-
dence on \AS, respects a variant of the RIP, the RIP, 4, (Xx, mk, Mk):
given a sparsity level K, and two constants 0 < mg < Mk, this property
imposes

millo]| < 3 1B(@)[1 < Mkllo|l, Vo € Zk. (3.37)

Under this condition, the error ||f — f|| is bounded, i.., instance op-
timal [FR17]. This is shown in the following proposition (inspired
by [CCG15, Lemma 2] and proven in Sec. 3.7.1).

Proposition 3.2 (¢»//; instance optimality of BPDN/,). Given K,
if there exists an integer K' > 2K such that, for k € {K',K+ K'},
the operator B has the RIPy, ¢, (Xk, mi, M) for constants 0 < mj <
My < oo, and if

mi ik — Mg \/VKK >9>0, (3.38)

then, for all f sensed through y© = B(f) + n® with bounded noise

nc||1 < €, the estimate f provided by BPDN, satisfies
|4 Y 1
If = Fll < Gl + Dy g, (3.39)

for two values Coy = O (Mg /7y) and Dy = O(1/7).
Notice that (3.38) is satisfied if
2
K > 8<M—’<> K, (3.40)

My 4/

in which case v = ﬁmKJFK/, and, from Sec. 3.7.1,

CO = 2(\/§—|— 1)(MK1/mK+K/) + 2 and D() = 4:(\/§ + 1)/mK+K/.
Interestingly, if both M and Q(Q — 1) sulfficiently exceed K, the op-
erator B respects the RIP,, ,,, with high probability.
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Proposition 3.3 (RIP,,,,, for B). Assume that assumptions 3.1-3.6
hold, with 3.5 set to sparsity level Ko > 0 and distortion § = 1/2 over
the set Xx,. For some values C,c > 0and 0 < ¢, < 1 only depending
on the distribution of w, if

M > CKplog(4Y), Q(Q — 1) > 4Ky plog(N, Ko, 6),  (3.41)

then, with probability exceeding 1 — 2 exp(—cM), the operator B re-
spects the RIPy, /¢, (Xk,, Mk,, Mk, ) with

. Vol Vol
mi, > 3k \/NO , and Mg, < 82 \/ﬁo : (3.42)

In this proposition, proved in Sec. 3.7.2, the constants in (3.42) have
not been optimized and may not be tight, e.g., they do not depend on
Ko.

Combining these last two propositions and using the (non-optimal)
bounds (3.42) that are independent of K, since 8(Mg//my x/)? <
18%, (3.40) holds if K’ > 1024K/c2. Therefore, provided B satisfies
the
RIPy, /¢, (£k,, Mk, Mk,) for Ky € {K’,K + K'}, the instance optimal-
ity (3.39) holds with

Co < 16(\f+2) =0(1), Dy= O(w%) = O(%)

While the constraint on K’ imposes a high lower bound on M when the
sample complexity (3.41) is set to Ko = (K + K') > (1024/c2 + 1)K—
as necessary to reach the RIP w.h.p.—the impact of the sparsity error
| — fxll in (3.39) is, however, attenuated by 1/vK' < ¢,/ (32vK).

For a fixed FOV L?, we also observe a meaningful amplification of
the noise error by Dy when the sampling grid G, ;) is too large com-
pared to Q: if the number of pixels N is too small, 3.2 may not be ver-
ified, since the image bandwidth lower bounds N; if N is too large the
noise error in (3.39) is vacuous.
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3.4 Recovery Analysis - Phase Transition Diagrams

We now compare our recovery guarantees with empirical reconstruc-
tions obtained on extensive Monte Carlo simulations with S trials and
varying parameters K, Q, and M.

To save computations, we adopt a simplified setting where (3.35) is
adapted to the sensing of 1-D zero mean sparse vectors in RN=2¢, with-
out any vignetting, i.e., f° = f, and 1-D MCF core locations. At each
simulation trial with fixed (K, Q, M), we verified 3.1-3.4 by picking the
1-D cores locations {p, };2:1 C R uniformly at random without replace-
ment in [—TN,g]’ and M sketching vectors {a,}M | iid.asa € C°
with a, = eUl027) g € [Q]. A zero average vector f € RN=2% was
randomly generated with a K-sparse support picked uniformly at ran-
dom in [N], its K non-zero components obtained with K i.i.d. Gaussian
values NV (0,1) to which we subtracted their average. Working only
on the recovery of zero-average vectors f, no debiasing is needed and
the sensing model is matched to the unilateral form (3.24) presented in
Sec. 3.2.4. We have B(f) = RGF, f (with L = A = z = 1) using the 1-D
DFT matrix F;.

To reconstruct f, we solved the (Lasso) program ’ [VF08] adapted
to our problem,

f= argmin 3 ||y — B(v)|3 st. [oli <1 (3.43)

with T = || f||1 set to the actual ¢;-norm® of the discrete object. Eq. (3.43)
is equivalent to BPDN/, in a noiseless setting (i.e., € = 0) as it implies
an equality constraint y° = B(f) [FR17, Prop. 3.2]. In the sparse
and noiseless sensing scenario set above, we thus expect from (3.39)
in Prop. 3.2 that f = f if B is RIP;,,;,, i.e., if both M and Q(Q — 1)
sufficiently exceeds K from Prop. 3.3.

In Fig. 3.6-3.8, the success rates—i.e., the percentage of trials where
the reconstruction SNR exceeded 40dB—were computed for S set to 80
and 100 trials per value of (K, |V|, M), respectively, and for a range of
(K, |V|, M) specified in the axes. Since 3.3 was partially verified, we
tested these rates in function of the averaged value of |V| < Q(Q — 1)
(which had a std < 0.08N) over the S trials instead of Q(Q — 1). In
Fig. 3.6, which displays several transition curves of the success rate vs.

"We used SPGL1 [VF08] (Python module: https://github.com/drrelyea/spgll).

8While this information is unavailable in practice, an appropriate value of the
threshold T can generally be estimated from the structure of the expected image, or
heuristically by performing multiple reconstructions with different values.
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Fig. 3.6 Phase transition curves obtained with fixed |V| = 240, ensuring widespread
Fourier sampling. The success rate is computed from S = 100 trials. The transition
abscissa shifts to the right for an increasing number K of spikes in f, indicating more
SROP are necessary to reconstruct the inteferometric matrix.

M for different values of K at |V| = 240, the failure-success transition
is shifted towards an increasing number of SROPs as K increases.
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Fig. 3.7 Phase transition diagrams showing M SROP of a Q x Q interferometric ma-
trix for a K-sparse object f (with |V| = 240 in (a), M = 122 in (b), and K = 4 in (c)).
One considers a uniformly random 1-D core arrangement and SROP using circularly-
symmetric unit-norm random {a,, }*_,. Each pixel is constructed with S = 80 recon-
struction trials solving (3.43) where we consider success if SNR> 40dB. The probability
of success ranges from black (0%) to white (100%). Dashed red lines link the transition
frontiers to the samples complexities provided in Sec. 3.3.2 and Sec. 3.3.4. In (b), the
line coincides only with low values of V due to multiplicity effects.

We observe in Fig. 3.7(a) that high reconstruction success is reached
as soon as M > CK, with C ~ 11, in accordance with (3.41) in Prop. 3.3
(up to log factors). Fig. 3.7(b) highlights that the Fourier sampling |V
(and thus Q) must increase with K. At small value of Q, we reach
high reconstruction success if |V| ~ Q(Q — 1) > C'K, with C' ~ 10,
in agreement with (3.41) (up to log factors). However, as Q rises
that linear trend is biased since the multiplicities in V increases, i.e.,
Q(Q —1) —|V| > 0 increases. As expected from (3.41), the transi-
tion diagram in Fig. 3.7(c) shows that at a fixed K = 4, both M and
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Fig. 3.8 Phase transition cube. The diagrams of Fig. 3.7 in a 3-D projection to better
get the interdependence between the quantities (K, |V|, M).

|V| must reach a threshold value to trigger high reconstruction success.
The maps of Fig. 3.7 are replaced in a transition cube in Fig. 3.8 to give
a another insight into the sampling conditions for recovery.
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3.5 Experimental MCFLI

This section stands out as it is the only part of the thesis where real ex-
periments were conducted, providing a convincing demonstration that
the theory can be applied in practice. In contrast, the results presented
in the other parts on radio-interferometry and diffraction tomography
are exclusively derived from numerical simulations. There are several
reasons for this: real experiments require expensive equipment (such
as optical tables, lasers, and other optical devices), ample space, a con-
trolled environment, and a high level of experimental expertise, which
is often hard to acquire. For the MCFLI experiments, I was fortunate to
collaborate with a team of experts who possess extensive experimental
experience.

We have tested our approach on a proof-of-concept imaging system
set in a transmission mode so as to limit both light power loss and Pois-
son noise [Siv+18a] in the measurements. We describe below the key
aspects of this setup, its specific SLM-to-speckle calibration, before pro-
viding examples of reconstructed images and studying the influence
of the number of cores, and speckle illuminations on the quality of the
reconstruction.

35.1 Setup

In the setup explained in Fig. 3.9, a continuous wave laser operating at
A = 1053nm, (YLM-1, IPG Photonics) is expanded and impinges upon
a Spatial Light Modulator (SLM X10468-07, Hammamatsu) used to
code the incident wavefront to the MCF. The MCF is made of Q = 120
cores arranged in Fermat’s golden spiral (as shown in Fig. 3.1), each
exhibiting a single mode at the laser wavelength [Gué+22]. Because
of fabrication defects, a maximum of only 110 cores will be simultane-
ously used. The MCF exhibits an inter-core coupling term of less than
20 dB [Siv+18a]. Unlike multimode fibers with stronger core coupling,
the focused or speckle patterns generated by an MCF are resilient to
thermal and mechanical external perturbations.

The SLM consists of a 800 x 600 grid of liquid-crystal phase modu-
lators that control the phase of reflected light. As shown in Fig. 3.10(a),
by mapping specific pixel groups (segments) on the SLM to individ-
ual cores of the fiber, an orthogonal basis of input modes is created
to modulate the light entering each core. After calibrating the SLM’s
phase response, any phase pattern in the range of [0-277) can be con-
veniently represented as an 8-bit grayscale image. The phase pattern
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Fig. 3.9 Schematic of the optical setup. Cutoff A, = 600nm, SLM=Spatial Light
Modulator, MCF=Multi-Core Fiber, LP=Linear Polarizer, f=object to be imaged,
OD=Optical Density (neutral density filters).

2n

0

Fig. 3.10 (a) SLM configuration (800 x 600 pixels) with lenslet hexagonal arrays ded-
icated to each core. Blaze gratings applied to each microlens deflect the rays toward
the proximal end of the MCF, while the 0™ beam is reflected out of the optical path.

(b) Speckle generated from a = (¢!% )qul with 6, ~ U[0,27). The part of the speckle
11d.

that reaches the camera is inside the white contours representing the examined object

f.

on each segment g comprises three terms: (i) a blazed grating ensures
to shift the modulated light to the first-order of the SLM, preventing
unmodulated light from entering the fibers, (ii) a convex lens and a se-
ries of telescopes produce a focused spot array aligned with the fiber
cores, achieving single-modal behavior with a demagnification factor
of 64; and (iii) a constant phase-offset for each segment which controls
the relative phases between the segments.

The light coming from the SLM is focused into the MCF proxi-
mal end by Obj; (20x/0.75Numerical Aperture (NA), Nikon), then
re-expanded on the distal end side with Obj, (20x /0.45NA, Olym-
pus). The dependence to fiber bending is avoided by placing the MCF
straight. Under these conditions, the transmission matrix’ of the MCF
remains constant and a single calibration phase is sufficient. However,
it is possible to greatly attenuate the MCF sensitivity to external per-
turbation such as mechanical bending by twisting the MCF along the
fiber during its manufacture [Tsv+19]. To ensure the validity of the
scalar model described in Sec. 3.2, a linear polarizer is placed after the

9 A matrix mapping the electric fields in the cores at the proximal end to the electric
fields in the cores at the distal end of the MCF [Siv+18b].
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fiber end to eliminate any polarization effects. To satisty the far-field ap-
proximation (a key assumption for (3.2)), the object is positioned at the
front-focal plane of a lens while the fiber’s distal end is placed at the
back-focal plane of the same lens [Goo05]. In our setup, the fiber is po-
sitioned at the focal plane of Objective lens (Obj,), and lenses L; and L,
(75 and 100mm, respectively) are used to re-image the conjugate focal
plane to a more accessible location on the optical bench. The object can
be positioned within +3.5mm tolerance, easily achieved with standard
positioning equipment.

The conjugate focal plane is re-imaged onto a 1920 x 1200 CMOS
camera (BFLY-U3-2356M-C, FLIR) which aids in the calibration and po-
sitioning of the system desribed in Sec. 3.5.2. The same CMOS camera is
also used for emulating single-pixel detection by summing up the pix-
els of the image. Each measurement has an integration time of 19.2ms,
and Optical Density (OD) filters are applied to match the light intensity
to the dynamic range of the camera for improved accuracy. Working in
transmission mode, we image a negative 1951 USAF test target mask,
contoured in Fig. 3.10(b). The sample image f is therefore binary.

3.5.2 Calibration and Generalized Sensing Model

Our MCFLI setup contains optical system imperfections that are diffi-
cult to model. For instance, regarding the hypotheses stated in Sec. 3.2,
(i) the interferometric matrix should be estimated on a set of continu-
ous, off-grid, visibilities, (ii) the imaging depth z is a priori unknown
and the fiber core diameters are not constant, and (iii) the linear polar-
izer (see Sec. 3.5.1) induces spatially variable, but deterministic, atten-
uation of the sketching vector component.

Rather than correcting all these deviations one by one, we adopt
the generalized MCFLI sensing introduced in Sec. 3.2.3 in (3.15). This
requires us to properly calibrate the system and to determine for each
core q € [Q] the complex wavefields E; in the object plane Z from
intensity-only measurements. We thus follow a standard 8-step phase-
shifting interferometry technique [CLY04]. We first fix a reference core,
arbitrarily indexed at 4 = 0, and we program the SLM to activate
only that core and another core ¢, for 1 < g < Q. We then record in
the CMOS camera the 8 fringe patterns Ipo(x; ¢x) = S(x;eo + ege'?)
(with the speckle definition from (3.14)) induced by the light interfer-
ence for 8§ different phase steps ¢ = 22X (k € [8]) of the reference
core, as well as the intensity Ipo(x;0) = rg(x) obtained from activating
only the reference core. Mathematically, given the polar representation
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Ej(x) := rq(x)ei(”q(x) of each complex wavefields,

Iqo(x;(pk) = ‘ro(x)eifl)o(x)-&-tﬁk +7’q(x)ei‘/"1(x)‘2

= I5(x) + L (x) cos (@q0(x) + %),

where [ := 3+ ré, I; := 2rgrg and @g0 := @5 — @o. We can then recover
rs(x) and @go(x) in each x by first applying a 8-length DFT on I;o(x; ¢x)
along the phase steps, and next dividing the last (7-th) DFT coefficient
4I$(x)ei""70(x) by 8ro(x) = 8+/Ipo(x), which gives

Eq(x) — rq(x)ei((pq(x)f(m)(x)) — Eq(x)eiigo[)(x)‘ (344)

From the fields estimated in (3.44) for all ¢ € [Q], we can reproduce any
speckle S(x;a) generated from a sketching vector & € C? using (3.14)
since this equation is independent of e~ 1#0(¥).

While the model (3.15) extends beyond the far-field assumption—it
only relies on accurate estimation of the wavefields—the optical con-
straints followed in Sec. 3.5.1 to reach the far-field model are necessary.
They allow these fields not to strongly deviate from pure complex ex-
ponentials, which preserves the validity of the FOV and sampling as-
sumptions 3.1 and 3.2 in the sensing model.

In particular, applying the debiasing procedure explained in Sec. 3.3.3,
we get the debiased observation model

y* = B(f) +n, (3.45)

where B(f) is now associated with the generalized interferometric ma-
trix Ig defined in (3.16). In other words, we abuse the notations
of (3.35) and consider a sensing operator B : h — B(h) := A% (Z§[h])
applied to a non-vignetted continuous image h. Regarding the com-
putation of B, we leverage the calibration to compute an estimate

B(h) := A%(Z§[h]) from a sampling h € RN of 1, assuming that the
proximity to the far-field assumption ensures that B(h) ~ B(h). For

each measurement m € [M], we in fact compute z,, = (S(-; am), h),
with S(-; a,,) computed from the estimated fields in (3.44), before debi-
asing all the measurements from (3.3.3), i.e., (B(h)), = z5,. Therefore,

the matrix Z§ is never explicitly estimated.

3.5.3 Results

We now present examples of reconstructed sample images obtained
with the considered optical setup described in Sec. 3.5.1, and the cal-
ibration and the sensing model from Sec. 3.5.2.
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For these experiments, our reconstruction scheme differs from the
one followed in Sec. 3.3. First, as explained in Sec. 3.5.2, the sensing
model considers a sampling of the un-vignetted sample image f, with
a sensing operator computed in the pixel domain. Second, instead of
the ¢1-prior, we decided to estimate this image by promoting a small
Total Variation (TV) norm, as it is better adapted to the cartoon-shape
model of the USAF targets. This deviation from the theoretical setting
described in Sec. 3.3 aims to provide insight into whether the proposed
SROP model and its associated single calibration can also reconstruct
images more realistically than sparse images. Third, the non-smooth
data-fidelity term of BPDNy, is replaced by a smooth quadratic /-
norm to facilitate the iterative computation of the associated convex
optimization. Thus, we solve the following optimization scheme:

f= arg;nin il = BAOIE+pllflv st £>0, (3.46)

with p empirically set to 210°. Since vignetting limits the image qual-
ity at the boundary of the FOV, we decided to measure the quality of
the estimated images with the SNR achieved between the vignetted
ground truth wf := w- f and the vignetted reconstruction w? =w- 7,
i.e.,, SNR(f, f) = 20logy,(|[wfll2/ |wf — wf|2) with the estimated vi-
gnetting w := Q! Zqul |E;|2

Fig. 3.11 Cores activated for the reconstructions shown in Fig. 3.12. (a) Q = 110 (b)
Q =55.

Experimental reconstruction analyses are provided in Fig. 3.12 for
images of N = 256 x 256 pixels. In accordance with 3.6, the phase
of the Q components of the sketching vectors were uniformly drawn
iid.in [0,27) with the 8-bit resolution allowed by the SLM. This con-
figuration maximizes the intensity of light injected in the cores. We
tested two values for Q, Q = 110, when all the MCEF cores are used,
and Q = 55, by downsampling the Fermat’s spiral by a factor 2, as
depicted in Fig. 3.11. In Fig. 3.12(a), we tested the quality of the recon-
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SNR

0 5000 10000 15000 20000
M M =49 M = 20000

Fig. 3.12 Experimental reconstruction on images with N = 256 x 256 pixels. (a)
SNR(w?, wf) vs. number of observations M for Q = 55 (blue) and Q = 110 (red)
cores. Solid lines represent the average, and light areas show +1c positions from 5
trials. (b) Ground truth f obtained by illuminating the USAF target with white light
passing through the MCF (c-d) Reconstruction using M = {49,2 - 10*} with Q = 55
cores (e) Rec. in RS mode (see Sec. 3.2.2) (f-g) Same as (c-d) with Q = 110 cores. (b-g)
are zoomed-in versions of the camera plane seen in Fig. 3.10(b).

struction for M € [49,20000] in comparison with an imperfect “ground
truth”(GT) f estimated by white light illumination through the MCEF,
shown in Fig. 3.12(b). Transitions similar to those in Fig. 3.6 occur
for a small number of observations and a plateau is reached around
M = 5000, representing a compression factor of M/N = 7.6%. The
highest SNR reached with Q = 110 cores is better than with Q = 55
cores, as higher image frequencies are captured with the denser core
configuration. This effect can also be viewed in Fig. 3.12(c-d f-g).

In Fig. 3.12(e), we show the backprojection of the interferometric ma-
trix, ie., fgp = L& (ZG[f]). The reconstruction SNR is 1.38dB. In a
nutshell, fgp is obtained by computing the inverse Fourier transform
of the partial Fourier sampling encoded in Z§. This corresponds to the
best reconstruction achievable in RS mode modeled in Sec. 3.2.2 with-
out an a posteriori deconvolution step, i.e., without regularization. Com-
pared to the reconstruction obtained in Fig. 3.12(e) with the RS mode,
the TV norm penalty reduces the blur of the reconstructed object. The
low SNR values attained in Fig. 3.12 are due to the comparison of the
reconstructed images with the imperfect “ground truth” f which is also
an estimation of the true sample f.
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3.6 Discussion

What has been done

In this chapter, we extended the modeling of MCFLI with speckle il-
lumination by including the physics of light propagation. This new
model highlights that the sensing of a 2-D refractive index map of in-
terest is limited both by the number M of applied illuminations and the
number Q (and arrangement) of cores at the distal end of the MCF. We
provided recovery guarantees and observed the derived sample com-
plexities in both numerical and experimental conditions.

In the Next Chapter

Here, two quantities were involved in the sample complexity of the
sensing model, namely Q and M. In MCFLI, the Fourier subsampling
operator W is fixed once and for all by design. In Chap. 4, the sensing
will benefit from a time-varying W, hence allowing for a denser Fourier
coverage. In the discussion of Chap. 4, we also briefly discuss clever
ways to do joint calibration and imaging [Dab+21]; an idea which is
also applicable to MCFLI and was unknown to the contributors at the
time these contributions were made.

Limits and Open Questions

Guarantees Future research could extend our recovery guarantees in
Sec. 3.3 to general sparsifying bases ¥ # I. This would require partic-
ularizing our proofs to sparse signals with zero mean, i.e., belonging to
Yy = {v € Zx : Lj(¥v); = 0}.

As announced in Sec. 3.3, a limitation of our approach lies in the
distinct visibilities Assumption 3.3. By construction, the density of the
visibilities—as achieved by a difference set—cannot be uniform. As
shown in Fig. 3.4, this is also true for the golden Fermat’s spiral ar-
rangement. Therefore, when Q grows on a fixed frequency resolution,
close visibilities are hardly distinguishable. A more promising sensing
model could integrate a variable density sampling (VDS) of the image
spectral domain [PVW11; Adc+17]. At the same time, this could also
allow for more general sparsifying basis by accounting for their vari-
able local coherence with the Fourier basis. However, combining this
aspect within the ROP model is an open question.
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Experiments In a first step, a truly single-pixel sensing reconstruc-
tion may be demonstrated. This requires an optical setup designed for
swapping the camera used for the calibration detailed in Sec. 3.5.2 and
a photo-detector, which was not the case for our experiments.

The MCF used in this work is made with straight cores, indicat-
ing that a fiber bending modifies its transmission matrix. This ex-
plains why, in our experiments, the MCF was fixed straight on the op-
tical bench. We look forward to experimental reconstructions using a
twisted MCF whose transmission matrix has been shown to be robust
to fiber bending [Tsv+19].

Future works on MCFLI also include experimental proof of concept
under reflective/endoscopic conditions. This endoscopic imaging is
more challenging because the factor 0 < ¢ < 1, which gives the fraction
of light collected by the single-pixel detector, can be very small. In low-
light conditions, other types of noise tamper the measurements—e.g.,
Poisson noise [SGR23]—thus making the inverse problem more chal-
lenging.

Extensions The proposed sensing model is a scalar model—it does
not include any polarization effect. Besides this brought us to place a
linear polarizer in our setup (see Fig. 3.9). An extension of the model to
vector diffraction theory would allow taking the polarization effect into
account.

Also, assuming that we only image a far-field 2-D plane perpendic-
ular to the MCF axis is incorrect. In practice, the light emitted by the
MCF propagates into a 3-D volume, and consequently interacts with
the entire volume. While temporal focusing is a good candidate to get
closer to this 2-D assumption, an interesting track is to explore the ca-
pabilities of imaging 3-D maps with generalized ROP models.

Coming back to the current rivalry between MCFs and MMFs, a
model explaining the speckles procuded by MMFs in the same fashion
as done for the MCFs would allow to study a sensing model very sim-
ilar to MCFLI (we would undoubtably call it “MMFLI”). In this case,
a symmetric model includes an Hermitian modal matrix whose coeffi-
cients relate to the pairs of modes (instead of cores), and a sketching
vector that also directly controls each mode. The subtle difference in
MMFLI is that this anticipated model would not be interferometric.
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Thus, it would include an intermediate forward operator other than
the Fourier transform F to explain the modal matrix. An open question
is the form and possible ways to accelerate the computation of this op-
erator. However, a second quantity; the number of modes Q—analogous
to the number of cores in MCFLI—would determine the sample com-
plexity of this compressive imaging model.

Broader framework The MCFLI model highlighted a sensing con-
ditioned by a two-component sample complexity. An interesting re-
view in the CI community would present all the compressive imag-
ing modalities—interferometric or not—that present this two-or-more-
component sampling in a discrete-to-discrete sensing model.
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3.7 Proofs

3.7.1 Proof of Prop. 3.2

The proof of this proposition is inspired by that of [CCG15, Lemma 2],
itself inspired by [Can08]. This lemma was developed in the context
of sparse matrix recovery from SROP measurements using a variant of
BPDN regularized by the trace of the matrix estimate. While certain el-
ements of our proof are similar to the one of that lemma, its adaptation
to the context of sparse signal recovery from BPDN/, (with a /; fidelity)
is not direct, which justifies the following compact derivations.

Let us first write f = f + h with the true image f, and some
residual h € RN. We define the support Ty = supp fx contain-
ing the indices of the K strongest entries of f. Next, recursively for
1 < i< [(N—K)/K']|, we define the supports T; := supp (hrc),, of
length at most K’ containing the indices of the K’ strongest entries of
he, with T, := UjZg Tj, and TS = [N] \ T

We first observe that, by construction, for all j € T;;q withi > 1,
il < % Lier, | = gllhr |1 so that ||y, , | < Iz, |13 This shows
that

ool < s Do lrlh = Jolbnlh. G47)

By optimality of f in BPDN/, and using twice the triangular in-
equality, we have

fll = 1F 1l = 1f + Rl = [ Fr, + Rl = | Frlls
Z [ frlln+ gl — Bz Ml = el
so that
Izl < 20| frelly + lon |l < 21| frellt + VK| A, . (3:48)
Therefore, combining (3.47) and (3.48) we get

7l
Yoz b ll2 < 222 + YK kg, . (3.49)

By linearity of B and since both f and f are feasible vectors of
the BPDN,, constraint, we note that sinceh = f — f

1B(R)[l1 < [B(f) =yl + [1B(f) =yl < 2e.
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Therefore, if B has the RIP;, /4, (X, m, M) for k € {K’, K+ K'}, we can
develop the following inequalities

> ull Bl = 5718 (k) |l — 31 B(hr) 1

2 mK“‘K/Hth HZ - ﬁ 21’22 HB(hT,)Hl
> Lo (g |2+ r,12) = 3 Eioa 1B (k) 1
> mr (Il ll2 + 1 [l2) — Mg Eisa [ 12

2|\ ¢ lli+VK][ |2
> Lo ([ la + o, []2) — M= 202,

where we used several times the triangular inequality, the fact that
|T;| = K' fori > 1, and (3.49) in the last inequality. The passage
from the second to the third line is due to ||k, ||* = ||hy,||? + |7 ||* >
(It || + (17, )2 /2.

Therefore, rearranging the terms, and since || f e li=If— fkll, we
get

\/K m /
)|k, || + ==
VK V2

VK
> (J5m+k — Mo \/f)(HhTOH + ||, )

2 4 oM U =fidh (\%mKJrK’ My ~— |\, ||

VK’

(3.50)

Finally, if \[mKJrK/ Mg/ \\? v > 0and K’ > 2K, then

Lf = £l = 1] < [z, || + [z, || + iz [l

1< lla
S5, Ml e 2 T+ K|l |

I f7glla
f

Ifrslh
2=

<22 (|, | + 1z, 1) + 2

(550) 2+7 ( + Mg Hf\/&dl])_i_

This thus proves the instance optimality (3.39) by taking

Co = %MK, +2, and Dy = HT\@

3.7.2 Proof of Prop. 3.3

The proof of Prop. 3.2 below shows that the intermediate (debiased)
SROP operator A does not have to satisfy a RIP on its own, which
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would have been required if it was used to recover a sparse Fourier
sampling vector provided by Ry, Ff. In this proof, we associate the
RIP,, /¢, assumed to be satisfied by the Fourier sampling (see Assump-
tion 3.5) with a concentration of the debiased SROP measurements in
their /1-norm to provide a RIP;, /¢, on the composed forward operator.
This procedure can be seen as a RIP preservation.

We will need the following lemmata to prove Prop. 3.3. We first
need to prove that ||.A(Z)||;, with A defined in (3.33) concentrates
around its mean. This slightly extends [CCG15, Prop. 1] where the au-
thors rather proved that the debiased operator A’—such that, for any
matrix Z and an even number of measurements M = 2M’, A'(T); :=
A(T)ip1 — A(Z)y for i € [M']—respects the RIPy, ;4,. This debiasing
is introduced to ensure that E.A’(Z) = 0. We show that this is also true
for A°.

We first show some useful facts about A and .A€.

Lemma 3.1 (Mean and anisotropy of the SROP operator). Given
an Hermitian matrix T € HC, a zero-mean complex random variable
a with Ba? = 0, and bounded second and fourth moments E|a|? = uy,
and E|a|* = py, and a set of random vectors {ay }M_, € CM with
components i.i.d. as amg ~ « (for m € [M], g € [Q]), the SROP
operator A associated with {a, }M_, is such that
EA,(Z)=E(ana;,, L) =y trZ, Ym € [M] (3.51)
LTEA*A(T) = u3 T+ (pa —2p3) Lq + p5(rT)1,  (3.52)

where the operator A" is the adjoint (see def. 2.2.1) of A with
Az e RM i A*(2) :=YM 2z, ana, € HS,

and the matrix Ly := diag(diag(Z)) zeroes all but the diagonal en-
tries of Z. Therefore, if L, J € H° with I hollow, then

EAY(J)=0, EA(Z) =0, and ;EA*A(T) = 3 Z.

Proof. Eq. (3.51) is an immediate consequence of Ewa,,&;, = ppI. Re-
garding (3.52), we first note that EA*AZ = EYM | (a} Za,)anel, =
ME(a*Za)aa*, and for q,7 € [Q], [E(a*Za)aa*]y = Z](.,kal IjlkIE(ac]’fakoéqoc;‘).

If g = r, then ]E(oc;.kockocqoc;‘) = IE(oc;‘ock]och) is zero if j # k, 5 if
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j =k #q,and uy if j = k = g. Therefore,

[E(a*Za)aa*]s = Z]Qzl Zi B (|aj* g )
= w3 tr(L) + (4a — 45)Zgg-

If g # r, then IE(zx;‘uckucqocj) is non-zero only if j = g and k = r (since
Ea? = 0 and Ela|> = py), in which case it is equal to p3. Conse-
quently, [E(a*Za)aa*|, = u3Z,,. Gathering these identities, we finally
find (3.52). 0

The next lemma (adapted from [CCG15, App. A]) relates the expec-
tation of ||LA(Z)||; to the Frobenius norm of hollow matrices Z; a useful
fact for studying below the concentration of || A(Z)||;.

Lemma 3.2 (Controlling the expected SROP ¢1-norm). In the con-
text of Lemma 3.1, if the random variable « has unit second moment
(12 = 1) and bounded sub-Gaussian norm ||a||y, < x (with x > 1),
then, for any hollow matrix Z & HC, the random variable & := a*Z«
is sub-exponential with norm |||y, < &2, and there exists a value
0 < ¢y < 1, only depending on the distribution of «, such that

cal Zllr < HENAIT) [ = Elg] < | Z]lr. (3.53)

Proof. The proof is an easy adaptation of [CCG15, App. A] to the ran-
dom variable ¢ = (aa*,Z)r = a*Za, for Z hollow. The constant c;
(Eq. 50) in that work is here set to 1 since (E|a*Za|)? < E|a*Zal?> =
MmE[AD)[3 = IZ]3. ]

The following lemma leverages the result above to characterize the
concentration of 5 [|A(Z)]|;.

Lemma 3.3 (Concentration of SROP in the ¢1-norm). In the context
of Lemmata 3.1 and 3.2, given a hollow matrix I € HR, there exists a
value 0 < c, < 1, only depending on the distribution of a, such that, for
t > 0, with a failure probability smaller than 2 exp(—cM min(#2,t)),

(= 262) TN < IAD) | < (A +263)| Tl (354
Proof. We can assume || Z||r = 1 by homogeneity of (3.54). Defining the

random variables ¢, := &), Za,, and &y, := |&m| — E|Cp| for m € [M],
Lemma 3.2 shows that each ¢, is sub-exponential with ||yully, <
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x%. Moreover, using the triangular inequality and E|&y| < [|&nlly,

(from [Ver10, Def. 5.131), we get || &y, < ||Em |y, + E|Em| < 22, show-
ing the sub-exponentiality of each & for m € [M].

Therefore, given t > 0, using [Ver10, Cor. 5.17], we get, with a
failure probability lower than 2 exp(—cM min(%, 7)),

—t < 3 Lo 6 = mlAD Il - HEIAD)IL <t

for some ¢ > 0. The result follows by applying (3.53) to the lower and
upper bounds E||.A(Z)||1, followed by a rescaling in t. O

Despite the non-independence of the centered matrices Ay, defining
the components of A, we can show the concentration of A°(J) in the
¢1-norm by noting that, if Assumption 3.6 holds, AS (J) = A5, (T 1) =
A, (Tn) — (A%, Th), applying Lemma 3.3 to the ¢;-norm of the first
term, and noting the second concentrates around 0.

Lemma 3.4 (Concentration of centered SROP in the ¢;-norm). In
the context of Lemmata 3.1 and 3.2 and supposing Assumption 3.6
holds, given a matrix J € HO and Ty, = T — T g, there exists a
value 0 < ¢, < 1, only depending on the distribution of a, such that, for
t > 0, with a failure probability smaller than 2 exp(—cM min(#2,t)),

(ca = 3tk%) [ Tnllr < 3 l1A(T )l < (1438 | Tnlp.  (3.55)

Proof. Given J € H® and its hollow part J1, = J — J 4, the opera-
tor A is defined componentwise by A, (J) = An(J) — (A%, T) =
(ames, — A, T), with A* = % Z]-Ail ajoc;‘. Moreover, from Assump-
tion 3.6, A, (J) = A;,(Jn) since both matrices a,«;, and A* have

unit diagonal entries. Therefore, by triangular inequality
[ 1A 1 = 3 AT ) 11| < [(A% Tn)- (3.56)

Given the iid. random variables {; = & Jhaj, we get (A*, Tn) =
+ Z]’I\il ¢j, with [E¢; = 0 from the hollowness of Jy. According to

Lemma 3.2, each ¢; is sub-exponential with |||y, < 2. Therefore,

using again [Ver10, Cor. 5.17], we have, with a failure probability lower
s o2t
than 2 exp(—cM min(, 7)),

_t < <% Z]Ail “]'a;(/ jh> < t/
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for some ¢ > 0. The result follows from a union bound on the fail-
ure of this event and the event (3.54) in Lemma 3.3, both inequalities
and (3.56) justifying (3.55). O

As a simple corollary of the previous lemma, we can now establish
the concentration of B(f) := @A°(T (Ff)) € RY in the ¢;-norm for
an arbitrary K-sparse vector f € k.

Corollary 3.1 (Concentration of B in the ¢1-norm). In the context of
Lemma 3.4, suppose that 3.1-3.6 are respected, with 3.5 set with sparsity
level Ko > 0 and distortion 6 = 1/2. Given f € X,, and the operator
B defined in (3.36) from the M SROP measurements and the |Vy| =
Q(Q — 1) non-zero visibilities with

Q(Q —1) > 4Ky plog(N, Ko, ),

we have, with a failure probability smaller than 2 exp(—c’' M) (for some
¢’ > 0 depending only on the distribution of w),

2o VO 1, < LB < 2020 | £

Proof. Given f € g, and J = T (Ff) € HY, let us assume that (3.55)
holds on this matrix with t = ¢,/ (6x?) < 1/6, an event with probability
of failure smaller than 2 exp(—c’M) with ¢’ > 0 depending only on ¢,
and x, i.e., on the distribution of . We first note that || Jw[|r = || Ry; Ff||
from (3.30). Second,

LIFIR < IRy AP < 3113 (357)

since from Assumption 3.5 the matrix ® := /N Ry, F respects the
RIP, /¢, (Zk,, 0 = 1/2)assoonas |Vy| = Q(Q—1) > 4Kq plog(N, Ko, 9).
Therefore, since B(f) = @A°(J) = @A (Jn), combining (3.55)
and (3.57) gives

o
MBIl = (o = 3t6%)@[| Tnllp = jcacd|| Ry FFII > 5% l £l
Similarly, using \/g(l +3tx%) < (3)¥% < 2, we get

W
LB < /30 + 306200 | £l < 20¥ 20 | 1],
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We are now ready to prove Prop. 3.3. We will follow the standard
proof strategy developed in [Bar+08]. By homogeneity of the RIP;,
in (3.37), we restrict the proof to unit vectors f of X, i.e., f € Z}';O =

Tk, NSy L

Givenaradius0 < A < 1,let G, C ZI*<0 be a A covering of Z*O, ie.,
forall f € Xy , there exists a f' € G), with supp f’ = supp f, such that
| £ — /|l < A. Such a covering exists and its cardinality is smaller than
() 1+ 2)%0 < (3)% [Bar+08].

Invoking Cor. 3.1, we can apply the union bound to all points of the
covering so that

c V V
vf'e Gy, 25V < LIB(f)h <202, (3.59)

holds with failure probability smaller than
2(%)% exp(—c'M) < 2exp(Kp ln(‘%N) 'M).

Therefore, there exists a constant C > 0 such that, if M > CKj ln(3EN ),
then (3.58) holds with probability exceeding 1 — 2 exp(—cM), for some
c> 0.

Let us assume that this event holds. Then, for any f € Xg,,

LB < LB + 4B = £l
<204 L IB(LL ) uf - £

i
Vol
<20 YR+ 1B,
with the unit vector r := f;f: However, this vector r is itself

1F =1l
Ko-sparse since f and f’ share the same support. Therefore, apply-

ing recursively the same argument on the last term above, and us-
ing the fact that ||B(w)||; is bounded for any unit vector w, we get

YV v
LB <20y, v =220 Y0
Consequently, since we also have

2l
MBI = 7B — % IBf = )l

o VIV
> 29 V0L~ LB,

we conclude that

« (1= Vol Vv Wl
s x ()Y < mlB()Ih < 2005 Y,
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Picking A = 1/4 finally shows that, under the conditions described

@ce VIVl

above, B respects the RIP, ¢, (Xk,, mk,, Mk,) with mg, > 35 UN

8 vV Nl
and M, < T‘D%
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Compressive
Radio-Interferometry

OUR journey into the world of interferometric sensing and Rank-One Pro-
jections (ROP), started in Chap. 3, continues, and ends with this chapter.

In a nutshell, we build upon the discoveries made in the sensing
model associated to MultiCore Fiber Lensless Imaging, and extend them
to another interferometric imaging modality: Radio-Interferometry (RI).

As in Chap. 3, this chapter studies the problem of recovering an
image o € RY from linear combinations of a subset of its Fourier co-
efficients. However, multiple interferometric matrices {Z;[o]}5_; will
now be accessed, with the index b associated to a short-time interval
(or batch), thus offering a denser Fourier sampling and a flexible way to
associate them. At each batch b, the compression of the interferometric
matrix Z,[o] will rely upon rank-one projections (ROP) of the form

yb = leIb[O']ﬁb, (4.1)

which ressembles the model (3.1) introduced in Chap. 3, except for the
index b representing time and the use of another sketching vector , on
the right. Another compression, namely Bernoulli modulations, will be
considered for the time dimension b. The final compressed measure-
ments will write in the form
B
Zm = embgmbyb (4-2)
b=1

with £1 modulations €y, €p,.
In summary, the studied sensing model will here cascade:
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1. An interferometric matrix: an hermitian matrix Z,[c] € HC of
Fourier coefficients of the image, with

2. Rank-One Projections: ROP of this matrix with two controllable
sketching vectors &, B, € CC.

3. Bernoulli modulations: +1 modulations of the ROP measure-
ments along the b-axis.

The main achievements of this chapter are to prove that (i) this sens-
ing model boils down directly from compressing the vector of mea-
surements at the level of the antennas, (i7) the huge compression ra-
tio for the measurements comes at a limited price of increased compu-
tational complexity and decreased reconstruction performances when
Bernoulli modulations are applied, (iii) formal recovery guarantees can
be provided, and (iv) it works using state-of-the-art reconstructions al-
gorithms in a realistic numerical setting.

This chapter mostly coincides with the content of our publications:
(J) Olivier Leblanc, Yves Wiaux, and Laurent Jacques, "Compressive

radio-interferometric sensing with random beamforming as rank-one
signal covariance projections.”, Submitted to IEEE TCI [LW]24].

(J) Olivier Leblanc, Taylor Chu, Yves Wiaux, and Laurent Jacques,
"Compressive radio-interferometric imaging: Rank-One Compression
with Bernoulli modulations accross time.", In preparation for Monthly
Notices of the Radio-Astronomical Society (MNRAS)..

The codes developed in the context of this chapter can be found at
https:/ /github.com/olivierleblanc/RAPHA, and in the forks of the uS-
ARA and AIRI projects accessible at

https:/ /github.com/olivierleblanc/uSARA and

https:/ /github.com/olivierleblanc/ AIRI.

4.1 Introduction

4.1.1 Motivation

The inspirations for the contributions proposed to the field of RI imag-
ing are divided in two aspects.

Adressing a Scalability Challenge

While contributing to MCFLI, we rapidly noticed the similarities with
radio-interferometric imaging where an interferometric matrix natu-
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rally arises from the partial Fourier sampling at a difference set of an-
tenna positions. In radio-interferometry, a tremendous amount of data
is processed and collected every day. This includes the Fourier sam-
ples contained in all the covariance matrices, which are consecutive in
time due to the rotation of the Earth. For the low-frequency array (LO-
FAR), this represents around 5 petabytes (5 10'° bytes) of data per year
[Haal3].

Compression is therefore becoming increasingly essential for reduc-
ing data size and ensuring the scalability of RI, particularly with up-
coming arrays like the Square Kilometer Array [Bra+19], which will
involve thousands of antennas. The issue faced by post-sensing com-
pression techniques is that they require computing the signal covari-
ance matrix to compress it afterward, hence temporarily storing the
uncompressed data. Furthermore, the compression mechanism often
impedes the forward model calculation, repeatedly called in iterative
reconstruction algorithms.

With the “Rank-One Projection” view developed in Chap. 3, we be-
lieved there was some room for improvement in understanding the
close relationship between antenna-level acquisition and stored inter-
ferometric data. The idea was to see how far ROP compression could
be applied to RI to save several orders of magnitude of data, while pre-
serving nearly all of the information contained in this compressed data.

Paving the Way for Advanced Interferometric Sensing

It was clear from MFCLI that sensing the object of interest with many
different receiver arrangements was key to providing a denser Fourier
sampling of the image. In MCFLI, the relative position between the
cores was difficult to adjust. Only axial rotation of the MCF was possi-
ble. In R, the varying Fourier sampling comes for free with the rotation
of the Earth. Chap 3 showed how to make efficient SROPs of an inter-
ferometric matrix, but not how to combine the projections made on sev-
eral interferometric matrices, each associated with a different visibility
set. This RI context was a good opportunity to (i) highlight a link be-
tween all interferometric imaging modalities, (ii) study what are smart!
ways to make these ROP combinations, and (iii) test the idea of random
ROP compression in advanced image recovery programs.

IIn the sense of low computational cost and information preservation.
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4.1.2 Differences Compared to Chapter 3

In this chapter, we exploit the similarities between radio-interferometric
imaging and MCFLI. However, there are many subtle differences be-
tween the two modalities that we will mention here.

In RI, antennas receive cosmic signals—or radiation from cosmic
radio sources. “Such signals are generated by natural processes and al-
most universally take the form of Gaussian random noise” [TMS17].
This is due to the incoherence of the sources, and the Van Cittert-
Zernike theorem that we access partial Fourier information. The tar-
get image here is a statistical quantity, namely the sky intensity distribu-
tion, which influences the variability of the cosmic signals coming from
different directions. This will motivate a clear separation between the
acquisition and the image reconstruction.

The underlying Fourier transform partially accessed is obtained in
direction cosine coordinates, i.e., the array of antenna images the sky in
a narrow set of directions, rather than in a plane perpendicular to the
pointing direction as in MCFLI. The visibilities are thus now normal-
ized by the wavelength A, rather than by Az.

The frequencies are no longer assumed to be on-grid as in the sim-
plification made for MCFLI. The NonUniform Fast Fourier Transform will
be used to interpolate the on-grid frequencies obtained from an FFT to
continuous frequencies corresponding to the baseline positions.

The origin of the noise in the visibilities in RI differs from MCFLI.
In MCFLI, thermal additive noise is directly impinging the single pho-
todetector measurements. In RI, the correlations computed to get the
visibilities transform the thermal noise at the receivers into the covari-
ance matrix of the noise, seen as a deterministic bias. The additive
Gaussian noise terms are rather a combination of statistical noise due
to the estimation of the covariance matrix and all other unknown im-
perfections to the system, going from time variation of the sky intensity
to quantum noise [TMS17] and passing through quantization noise.

4.1.3 Related Work

We mention works that address some of the latest challenges in the
context of radio-interferometric imaging. They are divided into those
contributing to the sensing model, and the others proposing efficient
and accurate image reconstruction algorithms.
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Sensing Model

The reader is invited to start by reading the works related to the inter-
ferometric sensing model of MCFLI in Sec. 3.1.2 as most of them are
still relevant in this chapter.

An important element of this chapter is to review the way visibility
measurements can be obtained from the radio-interferometric sensing
modality. The emphasis made on the random nature of the cosmic sig-
nals coming from the sky and incorporated into the antenna measure-
ments has been strongly inspired by [VWS18]. Radio-interferometric
sensing yields a partial Fourier sampling at locations obtained from
all antenna position differences, also named baselines; [Boo02] studied
optimized array designs. The visibilities are related to continuously
located baselines (pairwise differences of antenna positions). The for-
ward model considered for RI imaging generally uses the NonUniform
Fast Fourier Transform (NUFFT) to compute the Fourier transform of the
image at off-grid frequencies. In this work, we use the standard Min-
Max interpolation with Kaiser-Bessel kernels [FS03]. We will consider
both a small field of view and an array of antennas close to each other
compared to their distance to the cosmic source in the pointing direc-
tion. The invalidity of this assumption can be addressed with a spread
spectrum model, i.e., by considering the partial Fourier transform of the
image with a linear chirp modulation [CGB08; Wia+09a].

There exist several compression techniques in the literature, either
post-sensing compression® or compressive sensing, that have a connection
with our method.

Among the post-sensing compression techniques for RI, compress-
ing the observation vector that collects all the visibilities by multipli-
cation with a Gaussian random matrix (with much fewer rows than
columns) was discussed in [Vij+17] and was shown to significantly
increase the computational cost of the forward model. [Vij+17] pro-
posed an efficient Fourier reduction model approximating the optimal
(in the least-squares sense) dimensionality reduction that projects the
data with the adjoint of U where U contains the left singular vectors
of the SVD of the visibility operator ® := UXV*. On another hand,
baseline-dependent averaging [IWWS18; Ate+18] offers an effective reduc-
tion in data volume by averaging consecutive visibilities corresponding
to short baselines, i.e., those with nearly constant frequency locations.

2 A post-sensing compression technique necessitates computing the uncompressed
data before applying compression.
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Finally, as most of the reconstruction algorithms involve the matrix-
to-vector multiplication with the matrices ® and ®*®, storing the dirty
map—that is the mere application of the adjoint sensing operation to the
observed visibilities—instead of the visibility vector was considered as
a practical compression technique [Vij+17]. It can even be computed
on-the-fly during the acquisition [Thy+17; Kri+23].

Our scheme is a compressive sensing technique relying on random
beamforming, which had already been highlighted in [Oga+15]. Our de-
composition of the beamforming capabilities into direction-dependent
gains per antenna, then direction-agnostic gains per antenna for the
projection of the measurement vector, corresponds to the random
beamforming strategy R3 described in [Oca+15]. The novelty in this
chapter is the emphasis on the theory of ROP, allowing us to derive
the sample complexity in a simplified case. In the last decade, dif-
ferent works have provided matrix recovery guarantees via ROPs. In
particular, [CZ+15] derived sample complexities for the recovery of
low-rank matrices, showing that a matrix of rank r < Q could be
recovered from a number n 2> rQ? of random ROPs, and [CCG15]
studied the reconstruction of a signal covariance matrix from symmet-
ric ROP when the matrix satisfies one structural assumption among
low-rankness, Toeplitz, sparsity, and joint sparsity and rank-one. Fur-
thermore, we tackled the challenge regarding time-dependence by
proposing Bernoulli modulations of the different rank-one projected vec-
tors. Using Bernoulli modulations for compressive imaging purposes
is not new, and was considered, for instance, in coded aperture [FC78;
Wag+08], lensless imaging, and in binary mask schemes [Kol+15]. It is
used for computer vision and robotics but also astronomical and med-
ical imaging applications.

Recovery Algorithms

Although this thesis does not contribute to the large literature of in-
verse problem solving, and more precisely those focused on RI imag-
ing, several of them are used in the reconstruction analyses provided at
the end of this chapter. We distinguish two types of reconstruction al-
gorithms: (i) those that reconstruct images o sparse in some orthogonal
basis ¥ s.t. ¥*¥ =1, i.e.,, 0 = ¥*a with the sparse vector of coefficients
« € Yg. They are well suited for images of the sky composed of mul-
tiple point sources such as stars. (ii) Those that reconstruct even more
realistic RI images o € & C RN for some domain S of possible RI im-
ages in RY. In addition to point sources, the sky can also contain clouds
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of cosmic particles, as is the case with galaxy formation.

Among the algorithms designed for images sparse in an orthogonal
basis, CLEAN [Ho6g74] is one of the oldest techniques. It consists in
first acquiring a dirty map of the sky by raster-scanning a focus into a
specific direction, and then recover each spot of the image iteratively
using a Matching Pursuit algorithm [MZ93].

More complicated RI images are obtained from a more complicated
prior knowledge on their possible intrinsic content. SARA [CMW12],
and its unconstrained variant uSARA [RW20; Ter+22], integrate an av-
erage sparsity prior by composing an overcomplete dictionary made of
eight Daubechies wavelets and the Dirac basis. The “data-fidelity plus
prior” function minimized for the image reconstruction is then solved
with a re-weighted® Proximal Gradient Method (PGM). In the same
fashion, AIRI [Ter+22], and its constrained variant cAIRI [Ter+23], pro-
pose a Plug-and-Play approach by replacing the proximal operator in
the PGM by a deep denoiser specifically trained to remove additive
Gaussian noise in RI images. It was shown that the inserted denoiser
can be seen as the proximal operator of an implicit regularization func-
tion. The overall resuting PnP algorithm converges to a solution of
the set S of plausible RI images that has been implicitely learned by
the denoiser. Finally, R2D2 [A+23] is a data-driven approach rely-
ing on the alternation between Deep Neural Networks (DNNs) and
data-consistency updates. The reconstruction is computed as a series
of residual images estimated as the outputs of DNNSs, each taking the
residual dirty image of the previous iteration as an input. The approach
can be interpreted as a learned version of CLEAN. CLEAN, uSARA,
AIRI and R2D2 are scalable to very high dimensional visibility data
thanks to their parallelizability.

BlueBild [Tol+23; HS19] has recently received attention for its in-
terpretable energy level decomposition—practical for dealing with the
high dynamic range of RI imaging. The solution computed by BlueBild
is a least-square solution assuming a sparse image. The reconstructed
image is a sparse combination of array PSF, but there is no explicit reg-
ularization in the inverse problem solving. Moreover, a generalized
eigenvalue decomposition must be considered to represent the image
in an orthogonal basis.

Finally, we find it worth mentioning that weighting the visibilities
generally improves the quality of the reconstruction [Pra+18].

3Adressing the nonconvexity of the underlying minimization problem.
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4.1.4 Chapter Contributions

We provide several contributions to the modeling, understanding, and
efficiency of RI when combined with random beamforming.

Random beamforming Random beamforming of antenna signals be-
fore computing their correlation is shown to be equivalent to applying
random ROPs of the initial signal covariance matrix. Replacing the Q2
coefficients of this matrix with a small—but sufficient—number N, of
these projections for each STI represents a compression technique that
can be applied on-the-fly during the acquisition of the antenna mea-
surements.

Modulations of ROPs The ROP vectors corresponding to consecu-
tive STI intervals, or batches, are further compressed by progressively
aggregating them by applying random Bernoulli modulations; this al-
lows keeping a fixed final data size Ny N for N, ROP per batch and
N, modulations, reducing the number N, B of ROP elements.

Recovery guarantees Formal recovery guarantees are provided in
Sec. 4.5 for a sensing scheme—simpler to analyze theoretically—that
simply sums the ROP vectors of different batches, namely batched ROP.
Nonetheless, batched and modulated ROPs are shown to both find an
interpretation of ROPs applied to a total covariance matrix gathering
all matrices coming from different batches in blocks along its diagonal.
Guarantees adapted to modulated ROPs are expected to exist but not
proven here. From a set of simplifying assumptions, we show that one
can with high probability (w.h.p.) robustly estimate a K-sparse image
provided that the number of ROPs N, and the Fourier coverage with
Q(Q — 1)B visibilities guided by both the number of antennas Q and
the number of batches B are large compared to O(K) (up to logarithmic
factors). Our analysis relies on showing that, w.h.p., the sensing opera-
tor RGF satisfies the ¢, /¢ restricted isometry property which enables
us to estimate a sparse image with the BPDN,, program. This theo-
retical analysis is accompanied by phase transition diagrams obtained
from extensive Monte Carlo numerical experiments using the modu-
lated ROP model.

Numerical proof-of-concept: The imaging capabilities of the approach
are demonstrated in a realistic simulation setting. The ROP and
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modulations operators are plugged into actively maintained numer-
ical projects considering uv-coverages of the existing antenna array
MeerKAT [Asa+21] and applying the state-of-the-art reconstruction al-
gorithm uSARA [RW20; Ter+22]. The provided analyzes demonstrate
that the information contained in the visibilities can be compressed
with the modulated ROP scheme, reaching compression factors of 1%
for an equivalent quality of reconstruction of a realistic groundtruth
image than with the classical scheme.

4.1.5 Notations Specific to this Chapter

This chapter involves statistical quantities which were absent in Chap. 3.
The notation X; ~ P indicates that the random variables {X;}N | are

1.1.d4.
independent and identically distributed according to the distribution P.
The uniform distribution on a set .A is denoted by U/(.A). The expecta-
tion with respect to the random vector & is written [E,.

4.2 Preliminaries

Before delving into the core of this chapter, we anticipate on some sub-
tle aspects of the discussion by detailing the mathematics of three con-
cepts; namely the direction cosines, Van Cittert-Zernike theorem, and Non-
Uniform FFT.

Reminder on Direction Cosines

The radio-astronomical imaging differs from MCFLI in its extremely
large distances that separate the signal sources from the receivers. In
Radio-Interferometry (RI), the distance to the signal sources is not as im-
portant as the specific region of the sky being observed. This is why
we use another coordinate system than in Chap. 3, namely the direc-
tion cosine coordinate system. With direction cosines, only the direction
matters. If u := ue, + ve, + wey, € R3 is the blue Euclidean vector rep-
resented in Fig. 4.1, its coordinates in direction cosines are I := (I, m, n)
with

| = cosf, = lﬁuﬁ;’
u-e
m = cos B, = HuHZ (4.3)
n = cosb, = Iﬁuﬁj
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It is clear from (4.3) that [ + m? + n? = 1. We will thus replace n to
write I := (I,m, /1 — 2 — m?). A vector in direction cosine coordinates
is always unitary. In this chapter, the coordinate system will be chosen
such that ey, is parallel to the line-of-sight.

The antennas will be assumed to be in a plane normal to e;,. This way,
for the considered very large distance, the third component n ~ 1, and
we will continue this chapter with 2-D only coordinates I := (I, m).

m = cos 0,

€y

Fig. 4.1 The direction cosine coordinate system. An orthonormal basis (ey, ey, ew)
has by definition a third component e;, pointing in the direction of the coordinates
(I,m) = (0,0). An arbitrary direction with coordinates u = ue, + ve, + wey, has

direction cosine coordinates (I, m) = (m, m)

The Van Cittert-Zernike Theorem

We want to get an image of the intensity distribution ¢%(I) from inco-
herent cosmic signals generated by a Gaussian stochastic process. The
cosmic signal s at direction I := (I, m) and time instant ¢ follows

s(1,t) ~ N(0,0%(1)). (4.4)

The electric fields measured at two point P; and P, are written E1 (I, t)
and E;(I,t), respectively. We write u their distance (in units of the
wavelength) along the XY axes. The cross-correlation between the sig-
nals received at these two points writes (in the wide sense stationary case)
as E [E1(I,t)E5(1,t — T)]. The mutual coherence function is obtained by
integrating this cross-correlation over the entire source as

T(u,7) := /]RZ]E [E1(1,)E5 (1t — )] dL.
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First, we replace—with an ergodicity argument—the statistical expecta-
tion [E by a time average as

T
lim + [ Eqy(It)E;(I,t —T)dtdl. (4.5)
0

R2 T~>oo

By the means of radio-telescope measurements, we will be able to im-
plicitly obtain this mutual coherence function. Due to the incoherence
of the sources, we are particularly interested in I'(u#,0). In our context,
the difference in arrival time between the two receiving points is neg-
ligible compared to the total travel time, which means that the signals
received at the same time at these two points are mutually coherent,
despite the incoherence of the emitting source. This result is known as
the Van Cittert-Zernike (VCZ) theorem [Van34; Zer38].

Theorem 4.1 (Van Cittert-Zernike). Consider two very distant par-
allel planes, both perpendicular to the line of sight; if T'(u,T) is the
mutual coherence function between two points in the observation plane
as defined in (4.5), then

T(1,0) = /R P(De 2l (4.6)

where | := (1, m) are the direction cosines of a point on a distant source
in the source plane, u := (u,v) are respectively the x-distance and the
y-distance between the two observation points on the observation plane
in unit of wavelength and 0*(1) := E [|s(1,t)|?] is the intensity of the
source.

In the case where either the pairwise distances between the anten-
nas are not negligible compared to the distance to the cosmic source in
the pointing direction or the sky is observed with a large field-of-view,
the measured visibilities are essentially identified with a noisy and in-
complete Fourier coverage of the product of the planar signals with a
linear chirp modulation [Wia+09a]. This modifies (4.6) as

r(u,O) — /IR2 02(1)617110 )”lnzeflzmﬁldl

for a chirp rate w(u). Interestingly, this chirp modulation provides ac-
cess to higher spatial frequencies—improving the quality of image re-
constructions [Wia+09a].
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Non-Uniform Fast Fourier Transform

In this chapter, the continuous visibilities—the value of the image spec-
trum at continuous frequency locations—will be obtained from the
Non-Uniform Fast Fourier Transform (NUFFT). This compares to Chap. 3
where the frequency locations were assumed to be on-grid hence the
FFT was sufficient to compute the visibilities. Denoting (in the 1-D case
for simplicity) o2 (w) the Fourier transform of the intensity distribution
0?(I) at the continuous frequency w, this value is linearly interpolated
from the FFT Fo of the discrete image o using the MIN-MAX interpola-
tion technique of [FS03] as

- J
o2 (w) = Y (FO) jk(w)+jsy & (@), 4.7)
=

where

m | is the number of nearest neighbours to w,

m k(w) is the integer offset—centering around the closest on-grid fre-
quency of the FFT Fo, and

m g(w) € CN is the linear interpolation kernel.

® /k(w)+j/y =k(w) + jmod N is a modulo operation.

Consequently, the (noiseless) continuous visibility vector ¢ & RQ’B
containing off-the-grid Fourier samples of the image will be obtained
in (4.16) as ¢ = GFo where the combined operator GF represents the
NUFFT, with G € CQBXN the linear interpolation operator. Here, Q, B,
and N are the number of antennas, batches, and pixels detailed later.
As clear from (4.7), and illustrated in Fig. 4.2, G is sparse with only |
nonzero values per row. This will be important for the computation of
the complexities of the models in Sec. 4.3.4.
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Interpolation  On-grid Fourier

Interpolation operator measurements
kernel

g(w1) G Fo
[] |

Q°B

JoN

Fig. 4.2 Tllustration of the NUFFT computations. The FFT Fo € CV is linearly in-

terpolated with the operator G € CLBxN of sparsity Q?BJ, using only ] neighbors to
interpolate the FFT coefficients to a continuous frequency. G is the concatenation of

the interpolation kernels {g(w;) }IQ:ZF .
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4.3 Acquisition and Sensing Models

Here, we present three models compatible with radio interferometry.
The first is the classical scheme computing frequency samples of the
images, or visibilities, from the signal covariance matrix. Then follow
random Gaussian compression and baseline-dependent averaging; two post-
sensing compression techniques acting on the visibilities. Finally, we
propose a new compressive sensing scheme, coined modulated ROP, oc-
curring at the antenna level and circumventing the limitations raised in
the other models.

4.3.1 Classical Acquisition: From the Antenna Signals to the Visi-
bilities

This section provides a recapitulation of the classical sensing scheme.

The radio-interferometric measurements and the link of their covari-

ance matrix to the visibilities are derived. Then we show how the vis-

ibilities are usually accumulated over B batches in order to obtain a
sufficiently dense Fourier sampling of the image of interest.

Let us consider a context of radio-astronomical imaging, as depicted
in Fig. 4.3, with Q antennas* receiving complex Gaussian cosmic signals
s(L,t) ~ CN(0,02(1)) from the sky with power flux density distribu-

L.1.d.

tion 02(I) [W/m?]—the image of interest. We write I = (I, m) the direc-
tion cosines of the portion of the sky looked from the array formed by
the antennas. More precisely, a direction cosine coordinate system fixed
with its origin at the center of the Earth is chosen such that the center
of the field to be imaged is denoted by the unit vector so = (I,m,n) =
(0,0,1). The other directions in the region of interest are denoted by
s = so+ T with T = (I,m,v/1—12—m?). The region of interest will
be considered sufficiently small to approximate it as a plane®, or equiv-
alently 1 —12—m? ~ 1. The set Q(t) := {pql(t)}ff:1 C RR? denotes
the projection onto the plane perpendicular to sy of the instantaneous
position of the Q antennas—moving in time due to the rotation of the
Earth. Our reasoning is inspired by the framework of [VWS18] with the
following adaptations:

4We will write “antennas” as a generic term to designate telescope dishes, single
antennas or beamformed subarrays.

5The invalidity of this assumption can be addressed with a spread spectrum model,
i.e., by considering the partial Fourier transform of the image with a linear chirp mod-
ulation [CGB08; Wia+09b; Dab+21a].
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G1. We assume a monochromatic signal with a single wavelength A
and associated frequency f = { with the speed of light c. The
separation into frequency subbands can be done efficiently with
filter banks [VWS18].

G2. We consider the signals at instantaneous time t and thus report
their sampling to later.

G3. We deal with a continuous intensity distribution (1) rather than
a finite number of signal sources. On the time scale of the acqui-
sition, the intensity distribution is stationary.

G4. We give the explicit expression of the phase factors a,(l,t) =
i27 L(t)T

e Pi) 1 that inform on the position-dependent geometric de-

lays.

G5. We consider the same direction-dependent gain g(I) for all anten-
nas.

Note that G1. is in practice partially satisfied as we sample then
break the received signal into S subbands with frequency f; for s € [S]
to get x(n,s) where the index  is associated to the time [VWS18]. The
response of the receiving system, with eventual filtering and conver-
sion to baseband, is not explained in this thesis but more information
about it can be found in [TMS17, Chap. 6].

Up to a compensation for the arrival time difference between indi-
vidual antennas, we can always assume that all antennas lie in a plane
perpendicular to the pointing direction sp. Under the stated conditions,
[VWS18, Eq. (9)] which describes the temporal signal received by an-
tenna g € [Q] can be modified as x,(t) = %,(t) + n,(t) with the noise-
less measurements®

50 = [ sst e ar @8

where s(1,t) ~ CN(0,0%(1)) and n(t) := (ng(£))Sy ~ CN(0,E,)

are complex zero mean white Gaussian random processes with the as-
sumption [VWS18]

E[s(1, t)s*(I', )] = o2(1)é(1 - I'). (4.9)

We can stack the Q received signals into an instantaneous measure-
ment vector x(t) = (x1(¢),...,xqo(t)), with the (Hermitian) covariance

®The integration over IR? is possible, despite I € [0,1]?, because the gains g will be
zero outside [0,1]2.
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Sky intensity distribution

NP O a%(l) = a%(l,m)
%/ s Cosmic signals

~

/gn s(lt) ~ CN(0,02(1
ﬁ&b //};Froqucncy S0 (1) iid. ( )
//\\ Avio(t) )

4 Field of view
_______ = g(u)
Baseline “I (t)
P2 — Py
Ant(l‘,nna pQ (t)
measurements B
x1(t) To(t) e mo(t) = Jg2 9(0)s(L, t)e' ¥ Patiqp 4 ng(t)

Fig. 4.3 Schematic of the radio-interferometric sensing context. Far-away cosmic sig-
nals following a Gaussian random process, ie., s(I,t) ~jiq. CN(0,0%(1)) with an
intensity distribution ¢(I), are received by Q antennas. The antennas, positionned
in Q) = {pql(t)};gzl, have the same direction-dependent gain g(1,t) focusing a
specific region S of the sky. Each antenna q € [Q] integrates—with its own geo-
metric delay pql(t)Tl the cosmic signals from all direction into a noisy measurement

%o (t) = [ra g(Ds(L, ) x P3O L 4y ().

matrix as C(t) := EsE, [x(t)x*(t)] € H. Leveraging the Van Cittert-
Zernike theorem [Van34; Zer38] and assuming that the same realization
of the cosmic signals s(1,t) is received simultaneously at time ¢ for all
antennas, the covariance matrix can be recast as

C(i’) = IQ(t) [U'O] + 2. (410)

In (4.10), Z,, := E, [n(t)n* ()] is the noise covariance and

1

(P (t)*P]'L(t))Tldl (4.11)

—i2m

(ZawleDi 12/ c°(De

R2

is the jk-th entry of the interferometric matrix of the map c°—analogous
to [LW]24]—where ¢°(I) := ¢*(I)0?(l) is the vignetted map. Overall,
(4.10) and (4.11) show that RI corresponds to an interferometric system
that is affine in ¢°. It is tantamount to sampling the 2-D Fourier trans-
form of ¢° over frequencies selected in the difference multiset,
i (H-pi ()

V(1) = 3(Q) Q) = {va(h) = 5" =15 L, @12)
ie., (Zalo®](t))x = Flo°](vkj(t)), then adding the covariance matrix
of the noise L,,.
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Remark 4.1. It is impossible in practice to set the gains g(1) = 1,
i.e., to observe the whole sky with direction-independent gains. Like
in (3.4) in Chap. 3, the image of interest is vignetted, i.e., its field-of-
view is restricted. The nuance is that, unlike the vignetting imposed
by the effective width of the cores for MCFLI, the vignetting in RI is
designed by beamforming each antenna, either with the geometry of the
dish, by combining the signals received in a subarray of antennas, or a
combination of both.

Remark 4.2. The assumption of identical antenna gains in G5 removes
the calibration aspects from the discussion in this chapter. We will re-
turn to this question in the final discussion in Sec. 4.7.

In practice, the measurement vector x(f) must be time sampled as
x[i] = x(iT) with sampling period T and i an integer to perform digital
computations. Due to the rotation of the Earth, the time samples x[i]
are separated into B Short-Time Integration (STI) intervals, or batches, in-
dexed by b and of duration IT with I samples per STI. All these samples
can be stacked into a signal set X as

X = U Xy, Api= {xb[i], i€ [[I]]}, (4.13)

be[B]
where x,,[i] := x[(b — 1)I +i]. With a typical sampling rate of 1GHz,
and an STI interval IT of 15s, I &~ 15 10 samples are enough to accu-
rately approximate the covariance matrix with a sample covariance. The
batch duration is sufficiently short to assume that the set of antenna
positions for batch b remains nearly stationary within the time inter-

val T := [bIT, (b+ V)IT], ie, Oy == {pF ()} ,cr ~ {pih )iy An
example of realistic antenna arrangements {(),}7_, and corresponding
visibility sets {V,}B_, for V}, := (), — Q) is given in Fig. 4.4.

From the definition of x,[i] in (4.13), the sample covariance matrix of
batch b is defined as

I
= Eq [uslilx ( Y- (i) — Eo i 1)
:Cb—FNb(Xb) [0’]+Zn+Nb(Xb)
(4.14)
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- —7rl/2 0 7r)2 T
(a) (b)

Fig. 4.4 (a) Arrangement {Q;};% of the antennas of the Very Large Array (VLA)

[Tho+80] for a total observation time of five hours. (b) the visibility set {Vb}[lioo1 corre-

sponding to (a). The colors vary from blue for b = 1 to red for b = 100.

for any i € [I], Zq,[c°] := Zo=-1/2)im)[0°], and where we defined
the statistical noise as

Nb(Xb) = 6 ( = %XI: xh xb[ Cb).
i=1

Separating the expectation term from the statistical noise is not a new
idea [VWS18, Eq. (29)]. We are interested in studying the concentration
of Cy,(X},) around its expectation Cj to quantify the amount of statistical
noise. To this end, we will use the complex version’ of [Ver12, Corollary
5.50]

Corollary 4.1 (Covariance estimation for complex sub-Gaussian
distributions). Consider a sub-Gaussian distribution in CS with co-
variance matrix Cy, and let 17 € (0 1), t > 1. Define the sample
covariance matrzx Co(Xy) = 1 XL, xp[i]x [i]* with independent re-
alizations {xy[i] }1_, of this dzstrzbutzon Then with probability at least

1—2e" thnehas
If1 > C(t/1)2Q then |Ny|| = [|Cp(X) — Coll < 71ICo]l-

Here C = Ck depends only on the sub-Gaussian norm K = ||x||y,.

7[Ver12, Corollary 5.50] is easily extended to the complex case from a separation
into real and imaginary parts.
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Cor. 4.1 shows that the statistical noise can be decreased to any ar-
bitrarily small value #||Cp|| as long as a sufficient number I of samples
is used and as long as one can suppose each x;[m]| having the same
covariance, which is in concurrence with large values of I. From a lin-
earity argument, and remembering that the cosmic signals follow an
iid. complex Gaussian process s(I,t) 0 CN(0,0%(1)), the antenna

signals vector x(t) can be shown to also follow a Gaussian distribution
[Oks13]. The vector x(t) has zero mean and covariance C(t) as derived
in (4.10). The zero mean is verified with

B [u(0)] = [

R2

i2m 1

E, [s(1,)] e 1 P01l = 0, vg € [Q].

The complex Gaussian random vector x(f) is thus also sub-Gaussian
with ||x(t)[|y, < Cy/Amax(C(t)) for a constant C > 0. Indeed,

[x(t)lly, := sup [[(x(t),0)ly,

ve8SQ-1

< sup CE[(x(t),v)?]
veS-1

= sup Co'E[x(H)x*(t)]v
veSQ1

= sup Cov*C(t)v = Cy/Amax(C(t))
veSQ-1

where S9! is the unit sphere of dimension Q — 1 and we used [Ver12,
Ex. 5.8] between the first and second line. In the following sections, we
will assume that I is always chosen accordingly to target a given statis-
tical noise constant 7.

Re-using the boundedness and bandlimitedness assumptions 3.1 and
3.2 given in Sec. 3.3, ¢° can be represented by a vectorized image
o € RN of N pixels in the FOV. Compared to Chap. 3 (see Sec. 3.2.4),
the antenna locations are now allowed to be off-the-grid.While the in-
terferometric matrix at batch b, Z,, can be modeled in matrix form
as shown in Appendix 4.8.3, the discrete representation of ¢° yields a
vector formulation

0, :=vec(Zq,[0]) = GyFo (4.15)

where G, € C2*N is a convolutional interpolation operator that in-
terpolates the on-grid frequencies obtained from the FFT Fo in the con-
tinuous Fourier plane at frequencies corresponding to the difference
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set V, := V(t = (b—1/2)IT) defined in (4.12). This procedure is
known as Non-Uniform Fast Fourier Transform (NUFFT). We practically
use the MIN-MAX interpolation technique [FS03]. Finally, as depicted in
Fig. 4.5(a), all the visibilities accumulated with the B batches are com-
bined as
01 G
9=|:|=]|:!|Fo=GFo. (4.16)
0B Gg
Note that (4.16) compares to the standard RI forward model [Pra+18]
with less details about the NUFFT compensation terms. Indeed, they
write 0 = ®¢ with
® = WGFZDB (4.17)

where B € CN*N (already included into ¢ in our model (4.16)) ap-
plies the direction-dependent gain function g(1) to the discrete image,
D € CN*N is a gridding correction operator that scales the image to

correct for the interpolation convolution kernel G, Z C¥*NxN jg a
zero-padding operator that provides oversampling by factor « in each
dimension of the Fourier domain, F € C*¥*Nxa®N js the DFT operator,
G € CUBX@N js the interpolation operator playing the same role as
in (4.16), and W € CQBxQ’B weights the visibilities according to their
density. For the sake of notational simplicity, we will use the simplified
model (4.16) by keeping in mind that the realistic model (4.17) is used
in practice.

We emphasize the difference between the acquisition operator

X () = () () ) e
with ¥,(X}) := vec(Cy(&,) — In) € CZ, '

that computes the visibility vector v = ¥(X') from the antenna signals
X, and the imaging operator

o' € RN — ®(¢’) := GFo’ (4.19)

that computes a candidate visibility vector o' = ®(¢’) from a candi-
date image o’. These operators are identical up to the statistical noise
defined in (4.14), which means that

Ex¥(X) = ®(0). (4.20)

Historically, the goal of radio-interferometric imaging has been to
compute a good estimate o fitting the visibility data v yielded from
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¥Y(X(0)). Among the latest state-of-the-art reconstruction algorithms,
both SARA [CMW12] and AIRI [Ter+22] algorithms aim to provide an
estimate ¢ ~ ¢ by solving

¢ = argmin (v — GFo’|)3 + Ar(o”)
o'eRN

where the term r(c”) is a specific reqularization. Unfortunately, the to-
tal number of visibilities® $Q(Q — 1)B can become too large for arrays
containing thousands of antennas and aggregating measurements over
thousands of batches. The following sections describe ways to reduce
this number of measurements.

8Half of the Hermitian matrix Zq,[o] as well as its diagonal, containing the DC
component, are usually removed from the measurements to avoid redundancy.
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4.3.2 Post-Sensing Compression

Several post-sensing compression techniques have been considered in
the past.

Random Gaussian compression For instance, as depicted in Fig. 4.5(b),
one can reduce the dimension (and thus the memory footprint) of both
operators ¥ and ® with N, random Gaussian projections and compute,
at the acquisition and at the reconstruction,

y =AY (X), and (4.21)
iy = A®(c) = AGFo, (4.22)

respectively, with y,§ € CM and A € CN*@F with Ay o~

1.1.4.

N(0,1/N,) [Wia+09b]. It appears clearly in (4.21) that the compres-
p pPp y p

sion is applied after the acquisition of the visibilities, justifying the

“post-sensing” terminology. Unfortunately, A is dense and makes its

application untractable with O(N, Q2B) operations.

Baseline-dependent averaging Another possibility named Baseline-
dependent averaging [WWS18] consists in averaging the visibilities asso-
ciated to low-frequency content over consecutive batches. This yields a
reduced number of measurements, scaling as O(Q?B’), with an equiv-
alent number of batches B’ < B. Applying the averaging operator
S € {0,1}9B'*QB provides

y=SY¥(&X), and (4.23)
7 =8®(c) = G'Fo (4.24)

where G' € CLPF*N js the averaged version of G. Baseline-dependent
averaging is cheap and can provide more than 80% of compression
[WWS18]. However, the resulting projection does not leverage the low-
complexity representation of the image o

4.3.3 Compressive Sensing Scheme: Random Beamforming and
Bernoulli Modulations

This section develops a two-layer compressive sensing model relying
on (i) random beamforming for compressing the information stored in
the interferometric matrix of each batch, and (i7) Bernoulli modulations
followed by time integration to further compress the data stream along
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the time domain. The so-called modulated ROPs are presented as a good
candidate for reduced memory storage and cheap acquisition.

The separated ROP model that includes only the first compression
layer and the batched ROP model that compress along the time domain
by integrating the separated ROPs without modulations are presented
along the way. The bottlenecks of the separated ROP and batched ROP
approaches are explained in Sec. 4.5.3 and Sec. 4.3.4, respectively.

The following mathematical derivations focus on the noiseless mea-
surements, and the impact of noise is discussed at the end of this sec-
tion.

First layer: random beamforming In RI, beamforming is a signal pro-
cessing technique that has been used to enhance the sensitivity and res-
olution of radio telescopes by combining signals from multiple anten-
nas [VWS18]. Mathematically, given a sketching vector « and the sig-
nals defined in (4.8), beamforming can be modeled as a projection (or
sketch) of the measurements vector as

i2m LT
u(t) == a*x(t) = [r28()s(1,t) ZqQ:l oge r0ar (4.25)

= [r28&a(l)s(1,t)dl
f ival . . _ . L Q % QTH pL (t)Tl
or an equivalent direction-dependent gain g, (1) := g(1) L age M
By adjusting the phase and amplitude of the signals from the Q anten-
nas using the sketching vector #, beamforming allows the array to focus
on a specific direction in the sky by narrowing g, (1) compared to g(1).

As depicted in Fig. 4.6, let us consider two sketches p(t) and v(t)
of the measurement vector computed from (4.25) with the sketching
vectors & := (&1,...,ag) and B := (B1,...,Bo), and more specifically
their sampling u;[i] and v, [i] obtained in the same way as how x; [i] was
obtained in (4.13). Aggregating their product in time gives

yp = 1 5l poli]vg [d)

~ 4.26
— %Z{:l o’ xy (i) x[i] p = a* CyB. (4.26)

In (4.26), it appears that a*CyB := (aB*, Cy)r is a rank-one projection
(ROP) of the sample covariance matrix because it amounts to projecting
C, with the rank-one matrix a8 [CZ+15; CCG15]. Eq. (4.26) showcases
that the acquisition process has changed compared to Sec. 4.3.1. These
random beamforming computations are illustrated in the center box in
Fig. 4.5(c). We will define a new acquisition operator after introducing
layer 2.
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Fig. 4.6 Projections of the (noiseless) measurement vector X () with the sketching vec-
tors « and B. By leveraging the Van Cittert-Zernike theorem, integrating the product
of the projections p(t) and v(t) over time yields a ROP of the interferometric matrix of
the vignetted image Z[c°].

Inserting the definition of the sample covariance matrix (4.14)
into (4.26) yields

yp = a*Cpf = 'L, [0°]B+ & LnB + " NyB. (4.27)

Three terms appear in (4.27). First, the signal of interest, the ROP
w* L, [0°] B of the interferometric matrix (as detailed in App. 4.8.1, this
is analogous to [LW]24, Eq. (3)] in MCFLI). Second, the quantity a* X,
is a fixed bias term due to noise in the antenna measurements. This bias
is expected to be compensated, at least partially, by the knowledge of
the sketching vectors {«, B} and a good estimate of the noise covariance
matrix X,. Finally, «*N;,B is a ROP of the statistical noise, expected to
be controlled by the number of samples I. App. 4.8.2 provides more
details about beamforming. It makes the link between focused beam-
forming and the raster-scanning approach described in Sec. 3.2.2, and
presents the adaptive beamforming technique.

We are going to show that one can devise a specific sensing scheme
of the antenna signals that avoids storing individually the B sample co-
variance matrices {Cp} b_| as done classically in (4.27). This is possible
while still ensuring an accurate estimation of the image of interest. This
sensing first records N, < Q? different random ROPs of each E’b, or,
equivalently, N, evaluations of y; in (4.26) from different i, [i] and v, [i],
associated with random vectors &« and B. Following [LW]24], we con-
sider N i.i.d. random sketching vectors ayp, B, ~iid. p, P € [Np], for

some random vector p € C? with p, ot exp(i[0,2m)), q € [Q].

While random Gaussian vectors « and B were another appropriate
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choice (the only condition is sub-Gaussianity), unitary vectors are more
practical for implementation on real antennas, especially in analog op-
erations, as they only require tuning the phase by beamforming tech-
niques.

Separated ROP

We focus here on the forward imaging model. The N, ROPs are gath-
ered in the measurement vector 7, := (y'pb)gil e CM, with 7,, =
oy, Lo, [0]B,,- Moreover, following the methodology of Sec. 4.3.1, we

can write
y, =Ry G,Fo, (4.28)

where each row of the matrix R, computes a single ROP measurement,
ie, (R) ), = Vec(apbﬁ;b)T, for all p € [Np]. The B ROPed batches can
then be concatenated as

) R, Gy
Yp Rp| |G

with 7 € CNB, The imaging model (4.29), simply consists of adding
the separated ROP operator D to the conventional model (4.16) sensing
the visibilities.

We show in App. 4.8.4 how it is also possible to write the measure-
ment vector with the matrix form of the forward imaging model, sim-
ilarly to (ROPI), and conclude that its associated computational com-
plexity is higher than the equivalent vector form.

Layer 2: Bernoulli modulations

Batched ROP

Unfortunately, in (4.29), the number of measurements N,B still de-
pends on the (fixed) number of batches B. Furthermore, as the name
implies, the separated ROPs approach does not mix the visibilities of
different batches. The forward operator in (4.29) contains a non-dense
ROP operator D—which is actually block-diagonal. This makes it more
difficult to analyze in the same theoretical framework as in Sec. 3.3.
There exists work on providing the RIP for dense i.i.d. random block-
diagonal matrices [Eft+15], but it does not apply to the ROP matrices
{R,}B_, which are noti.i.d.
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The Batched ROP approach, consists in compressing along the time
domain by batching the measurement vectors obtained for each batch
together as = Y_b_, , € CNe. This is equivalent to writing

G1
7= [Rl RB] : | Fo = RGFo = R®o, (4.30)
Gg
with R € CM*xQB Ag clear from (4.30), the ROP operator R is now

dense, and a RIP of the total forward operator R® can be provided (see
Sec. 4.5).

Remark 4.3. The batched ROP approach also finds a nice interpreta-
tion in terms of ROPs of a total interferometric matrix, defined as

T .= - : (4.31)

The p-th measurement writes

ﬁpl

ﬁpB

o _ * * _ B
Jp = N;I‘Bp = |:(Xp1 0oo lXpBi| - Zb:l “ZbIQbﬂpb'

Zo,

(4.32)

And the final ROP vector writes as ij = (yp)fil = A(Z) where

the sketching operator A defines I ROP [CCG15; CZ+15] of any
Hermitian matrix H € HC with

A(H) == (w8}, H)F),". (4.33)

The name given to this approach appears even more clearly in (4.32);
each ROP measurement is given as a ROP of the total interferometric
matrix—summing all the batches together. This viewpoint in (4.32)
will be useful for the guarantees given in Sec. 4.5.

Modulated ROP

Despite being accompanied by recovery guarantees, the batched ROP
model suffers from a severe increase of the computational cost of the
forward model, as will be discussed in Sec. 4.3.4. Following an ap-
proach whose feasibility will be discussed momentarily, we thus apply
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Nm Bernoulli modulations of the ROP vectors before aggregating them,
i.e.,, we compute

Zn = Lo YmbT (4.34)
with the modulation vectors y,), o~ v, m € [Nm], and 7, ot U{+£1},
b € [B].

From the separated ROP model (4.29), this can also be viewed as

Zn=[yml .. Yl 7= (7 @D7

with I € RN*M and the Kronecker product ®. Moreover, the Np,
modulations can be concatenated as

21
=T ®I)j =My,

N
Il

ZNm

with T := [yy,..., 7y, ] € {£1}FPNe, M =TT @1 € {£1} M NnxNB,
and z € CNeNm_ The resulting imaging model writes

z=®(0):= MDGFo (4.35)
}NmeprB

which turns in to simply apply the modulation operator M € {+£1,0
to the separated ROP model in (4.29).

On the acquisition side, this defines the compressive sensing operator
XeClz=(z",...,zn, ") := F(X) € CNoNm, (4.36)

with
B ~
Zmp ‘= Z 'Ymb“;b(cb(/yh) - Zn)ﬁ;br p € [Np], m € [Nm]. (4.37)
b=1

As illustrated in Fig. 4.5(c), this also means that, in the noiseless case
(En = 0) or up to a debiasing step removing the contribution of the
noise covariance,

B

Zmp = Z YmbY pbs with Ypb = %

I
pp iV [i] (4.38)
b=1 i=1

which involves the computation of antenna signal sketches p;[i] :=
oy xp[i] and vyp[i] := By [i].
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Remark 4.4. Like the batched ROPs, the modulated ROPs approach

also finds a nice interpretation in terms of ROPs of the total interfero-

metric matrix I. Introducing the modulation vectors €y, €y € {£1}8

with €y - U{-1,1}, Ym € [Nn], and the diagonal matrices
1.1

D.,, Dz, € {+1,0128%QB yity
D, := diag(en) ®Ig, (4.39)
and equivalently for Dg, , the (p, m)-th measurement writes

Z_mp = (DemaP)*I(DEmﬁp)

IQl gmlﬁrﬂ
:[emlazl emBa;B} :

Lo, gmBﬁpB

B B B
= Y emCmbpp Loy By = ) EmbEmbph = ) YmbTpb-
=1 = =
(4.40)

With vy 1= €up€mp, we recover in (4.40) the modulation principle
introduced in (4.34).

For the computational complexity of the forward imaging model,
critical in all image reconstruction algorithms, the discussion about
the structural differences between the operator MD composing the
ROP and Bernoulli modulations, and the operators A for the Gaussian
compression and G’ for the baseline-dependent averaging, is given in
Sec. 4.3.4.

4.3.4 Complexities

This section compares the complexities of the models presented in
Sec. 4.3.1-4.3.3. It starts with the analysis of the acquisition process
given in Table 4.2 and the complexities involved in the image recon-
struction process are provided in Table 4.3.

The complexities are accompanied by a numerical value using Ta-
ble 4.1 as reference. We distinguish the number of projections N, ap-
plied in the batched ROP approach from the number of projections per
batch Ny, applied in the separated and modulated ROP approaches be-
cause the sample complexities required for image recovery are differ-
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ent. The provided numerical values are not self-explanatory for the
actual complexities occuring in real arrays of antennas. First, there are
indeed arrays coming up with thousands of antennas. Second, the to-
tal number of batches associated to 24h of acquisition depends on the
duration of a batch. And finally, the cosmic signals are separated into
many frequency subbands whose number is a multiplication factor for
the computational complexity. Consequently, the differences in order
of magnitude of the different models are more important than their ab-
solute values.

Table 4.1 Typical values in RI. A number of batches B = 1000 approximately corre-
sponds, for batches of 15s, to a total acquisition of four hours.

Symbol | Value Number of
N 10° Image pixels
Q 107 Antennas
B 10° Batches
Np 10° Projections
Npp 50 Projections per batch
Nm 102 Modulations
J 50 | Neighbours for interpolation with G
B'< B 10° Equivalent batches
N, STQZ | 10° Pixels activated by visibilities in b
N < QJ*B| 10 Pixels activated by all visibilities

Acquisition

Table 4.2 Computational cost of the acquisition and sample complexities in O. The
green and red cell colors indicate low and high complexity, respectively.

Name Model | Cost per batch Max size
Classical acquisition Y Q? ilF Q’B 107
Post-sensing compression | AY | NpQ* | 107 Q? 10*
Compressive sensing ¥ NppQ | 5 103 NppNm | 5 108

The computational cost during the acquisition is as important as
controlling the memory usage. Table 4.2 compares the computational
cost and maximal data size of the classical, post-sensing compression
and compressive sensing schemes.

To compute the visibilities, the outer product of each antenna sig-
nal vector is taken, each costing O(Q?) = 10* operations. In the dense
Gaussian compression approach, the visibilities must first be computed
and then projected by a large matrix, costing O(Np,Q?) = 107. This

150 |



Acquisition and Sensing Models | 4.3

need to compute the visibilities and then project them with long vec-
tors strongly increases the cost at acquisition. It shows why no dense
matrix compression was considered earlier and more complex dimen-
sionality reduction techniques were required [Vij+17].

All ROP approaches require Ny, (or Np) projections per measure-
ment vector, costing O(NypQ) = 510° (resp. O(N,Q) = 10°). It is seen
that the cost of the modulated ROP sensing approach becomes smaller
than the classical sensing scheme if Ny, < Q.

The key observation in Fig. 4.5(c) is that the number of measure-
ments never exceeds NppNm during the acquisition because the ROP
and modulations can be computed and aggregated on the fly. Asshown
in the numerical experiments in Sec. 4.6, NppNim can be much smaller
than the Q?B visibilities of the classical scheme while still ensuring ac-
curate image estimations.

The random Gaussian post-sensing compression must compute an
intermediate number Q? of visibilities during each batch. More particu-
larly, computing N, projections of each visibility matrix costs O(N,Q?)
operations per batch.

In the compressive sensing scheme, we do not account for the num-
ber O(NppB) of sketching elements needed for the random beamform-
ing because these values can be selected and stored with less precision
than the final data.

Image reconstruction

In Table 3.1, the provided complexities were slightly misleading be-
cause the fact that only some pixels are hit by the visibilities was not
taken into account. In this section, a better evaluation of the complexi-
ties is given by exploiting the sparsity of the interpolation matrix G.

Table 4.3 provides an ordered comparison of the models presented
in this section.

Memory storage As will be clear in Sec. 4.6, the number of ran-
dom projections needed for reliable image reconstruction is typically
Np = 103. In Table 4.3, one observes that storing all the visibilities @ is
expensive; with Q?B = 107 values to store. Averaging the visibilities,
as explained in Sec. 4.3.2, reduces the storage to Q*B’ = 10°. The num-
ber of stored visibilities for separated ROPs is NypB = 5 10* and for
modulated ROPs is NppNm =5 103.
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Table 4.3 Complexities of the forward imaging models for CRI in O. The green,
orange, and red cell colors indicate low, medium, and high complexity, respectively.
The x denotes precomputed versions.

Model Name Acquisition Forward model Memory
per sample Nlog N 2107
+ +
) Classical Q? 10* JQ?B 5108 | Q°B 107
SP® | Averaging Q? 104 JQ?B' 5107 | QZ%*B 100
A® | Gaussian | NpQ* | 107 N,Q*B 100 Np 10°
D® | Separated | NpQ | 510° Np,Q?B 510° | NypB | 510*
*NpbBNj, 5107
R® Batched | NpQ | 10° N,QB 100 Np 10°
MD® | Modulated | NppQ | 510° | NypB(Q*+ Nm) | 510% | NppNm | 510°
*Npb NN, 510°

Cost of the forward model With the consecutive application of A,
G, and F in (4.22), the computational cost is O(NlogN + | Q%B +
NpQ?B) =~ 10'°.

The cost of applying consecutively D® for the separated ROPs ap-
proach is O(Nlog N + JQ?B + Ny, Q?B) ~ O(Np,Q?B) ~ 5 10°. As al-
ready explained in Table 4.5, the cost of the forward model by precom-
puting {A,Gy}}_; is O(NppBN; + Nlog N) ~ 5 107. The precomputa-
tion costs O(NppBJQ?) ~ 10'°. As the precomputation step is unique
and the recovery algorithms presented in Sec. 4.4 require thousands of
iterations to converge, this precomputation cost is generally acceptable.

For the batched ROPs approach, applying consecutively F, G, and R
costs O(Nlog N + JQ?B + N,Q?B) ~ 10' operations. This is exactly
the same cost as for the dense Gaussian compression. If RG is precom-
puted, the precomputation costs O(NpJQ?B) ~ 10'° and the forward
model costs O(N, N’ + Nlog N) =~ 5107.

For the modulated ROPs approach, whose forward imaging oper-
ators are illustrated in Fig. 4.7, applying M to the separated ROPs
only adds the negligible O(NiuNp,B) = 5 10° operations to the com-
plexity of the (precomputed or not) separated ROPs. The effective
cost of the modulations is negligible compared to all other operations
because the +1 values only imply flipping signs of the values pro-
cessed in RAM. Still, the cost of applying the operators MDGF se-
quentially is dominated by the cost of D, i.e., O(Np,BQ?) = 5 10%. In
order to never need to compute either all the visibilities or the pro-
jections per batch, the whole operator MDG can be precomputed in
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Bernoulli Separated ROP . Interpolation  On-grid Fourier
modulations operator Int "12)0]1:1' on gperator measurements
Rl Kerr
D g(wi) G Fo

1 @*B

Q’B vec(an,, BN, )

J
N

Fig. 4.7 Structure of the modulated ROP operators. As already illustrated in Fig. 4.2,
the Q2B visibilities are obtained by interpolating with G, and at a cost O(JQ?B),
between the on-grid frequencies computed from an FFT of the image Fo costing
O(Nlog N) operations. The separated ROP operator D requires O(prQzB) oper-
ations and consists of a block-diagonal matrix, where each row of each block is the
vectorization of a rank-one matrix. The modulated ROP are finally obtained by apply-
ing the Bernoulli modulation operator M at a negligible cost (’)(NmprB ).

O(NmprB + NpbBJ Q?%) ~ 10% operations. After this precomputation,
the forward model has the overall lowest cost of O(5 10°).

The baseline-dependent averaging has a computational cost of O(JQ?B') ~
5107 with the costless precomputation of G'.

In conclusion, the modulated ROPs approach gets the best of all com-
plexities, with a small acquisition cost, forward model, a compression
of the measurements, and sum of the projections along the batches to
come close to the recovery guarantees provided in Sec. 4.5.

4.3.5 Noise Sources

In this section, we bring back the noise terms forsaken since Sec. 4.3.1
and derive the effect of noise added to the separated ROPs on their
Bernoulli modulations.

To be realistic, it is unclear at which stage of the forward model an
additive noise needs to be inserted. The position (in the sensing model)
of the dominant thermal noise heavily depends on the practical imple-
mentation of the acquisition process. From [TMS17], it seems reason-
able to consider an additive Gaussian noise on the separated ROP mea-
surements. However, it is still possible to consider an additive noise on
the visibilities, and to infer the noise resulting on the separated ROPs,
but this is fastidious. In the following, we directly start from a noise
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model on the separated ROPs.

As a reminder, in the Sec. 4.3.3 which describes the noise in each
ROP measurement when random beamforming is applied to the anten-
nas, we ended up with two major noise terms in (4.27) rewritten here

Yy =" Lo, [0°]B+by+Cp:

(i) abias by, := a* X, with the covariance of the noise X, (ii) a statistical
noise term §;, := a*NpB. Interestingly, the covariance of the thermal
noise on the antennas X, is generally orders of magnitude higher than
the visibilities coming from sometimes very weak cosmic sources and
contained in Zq, [¢°] [VWS18]. Depending on the spatial arrangement
and proximity of the antennas as well as their physical connections,
the covariance of the noise L, can sometimes be well approximated
as a diagonal matrix. In any case, the bias b, must be systematically
subtracted by using a good estimate of L, [TMS17].

The statistical noise, studied in Sec. 4.3.1, is in practice very miti-
gated because the sampling rate is on the order of 1GHz, and a typical
STI interval is 15s. This makes a sample covariance computed using
M = 15 10° samples. The unstopping rotation of the Earth also induces
noise in the measurements, as we had to assume a fixed position for
the antennas within each batch in Sec. 4.3.1. The frequencies associated
to each batch are not exactly ponctual but rather a blurred version of
curved paths into the Fourier plane. There are obviously many other
noise sources such as quantum, quantization, and correlator’ noise for
instance.

In the following, we make an abuse of notation to rewrite ¢; as the
additive noise term encompassing both the part of the bias b, remaining
from an imperfect compensation and all the other upper cited noise
sources. The compensated version y, of separated ROP measurements
in (4.28) can thus be written as

Y, = R,G,Fo + Zb (441)

with &, ~ CN(0,E,) for a noise covariance E; at batch b. Recalling
11.d.

the definition in (4.34) of the modulated ROPs z,, := 2117321 YmpYy, the
noisy model arises as
z=MDGFo +( (4.42)

0lder radio-interferometers used to compute analog correlations, inducing corre-
lator noise [TMS17].
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with the modulated noise

&1
fi=1 :
C N
and Z,, := Y2 vy o~ CN(0, Yb 1 Ep), Vm € [Nm] conditionally

to the knowledge of the modulations {7, } E'Zl\{’j‘mzl. One easily verifies

that

B — B — B —
BZb:l Zp Zb:1l;¥1b’72bﬁh Y p—1 V1Y N b b
Yo—1 Y2 Y10 =D Y -1 Ep
{~CN O, i .
B [l B —
Y1 VN b Y 16D Yp—1 Ep

By remembering 7y, ~ U{—1,1}, one has E, [ Zp 1 YVupYm pE6] = 0.
1.1.4.

Hence, defining & := Y5 | E,, the noise distribution is well aproxi-
mated as
{~CN(0,IN, ®E). (4.43)
where
I E= .
Nin © Np, times

o]
H
d

Eq. (4.43) shows that the noise { added into the modulated ROP mea-
surements z can be approximated as a centered complex Gaussian noise
with a block-diagonal covariance matrix Iy, ® E. In this approxima-
tion, valid for a big number of batches B, the {{,,}N™, are mutually
independent.

As a concluding remark of this section, the good news is that the
additive noise  in the modulated ROP model (4.42) remains a centered
Gaussian noise. Furthermore, if the covariance matrix E; of the noise
added to the separated ROP measurements is diagonal, so is the covari-
ance of .
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4.4 Recovery Algorithms

In this section, we present the image recovery algorithms used in the
recovery analysis given in Sec. 4.6. As motivated in Sec. 4.3.3, we analyze
these algorithms applied to the modulated ROP scheme with sensing
model

z=MDGFo +{=Anc+, (4.44)

where o is the image of interest, { is the additive noise on the modu-
lated ROPs explained in Sec. 4.3.5, F, G, D and M are respectively the
DFT, visibility, separated ROP, and modulation operators.

The simplest algorithm—mnamely CLEAN—suitable for sparse im-
ages is presented first. The BPDN program is briefly recalled. Then, we
explain USARA; a state-of-the-art algorithm based on a proximal gradient
approach.

441 The Good Old CLEAN

For half a century, beamforming techniques have been used to focus the
received cosmic signal in a specific direction I* in the sky S and to re-
construct the image of the sky from successive translations of that fo-
cus. As explained in Sec. 4.3.3 with the correspondence between beam-
forming and raster-scanning, it is possible to construct a blurry version
of the image of interest—often called dirty image Uéirty(l)—using a beam-
forming technique.

Mathematically, constructing a dirty image from any sensing model
y = ®x consists in computing a raw estimate as xg;yy, = ®*y or
Xdirty = <I>+y. The beamforming technique explained above is equiv-
alent to compute the dirty image as cqirty = F*G"GFo. With our
scheme, a dirty image can be computed as

Tairty = Alyz. (4.45)

Naturally, the dirty image in (4.45) is of lower quality than what could
have been obtained by beamforming. Still, we can apply a simple re-
covery algorithm to it. We can associate a dirty image Uﬁirty(l) with the
discrete ¢ gjrty, which will be used for CLEAN.

The standard algorithm CLEAN'? [H6g74] is based on the assump-
tion that the sky is mostly empty, and consists of a set of discrete
point sources of size K. The sky can thus be written as ¢2(I) =

10Tt has been shown that CLEAN is equivalent to Matching Pursuit [MZ93].
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Y&, 026(1 — Iy). The ponctual sources are estimated one-by-one iter-
atively from the brightest to the darkest via a sequential Least Squares
fitting method. CLEAN uses the dirty image Uéirty(l ) and the dirty beam

(which is a synonym for PSF) ¢ (1) = 2572:1 ¢ 71 Pis for the reconstruc-
tion. The simplest form of the algorithm is reminded in Algo. 4.1.

Algorithm 4.1 CLEAN

Require: aﬁirty(l) and ¢ (1)
1g=1
2: whileg < K do
3: qg+= 1
4 l; = argmax; Jﬁirty(l ) > g-th brightest source position
5: @2 = (Téirty(lq) /¢a(0) > source intensity
6 Ogirty(l) —=0pa(l-1;), VI€S > dirty image cleaning

return ¢%(I) = Uﬁirty(l) + Yk 01— 1), VIES.

There exists improvements to Algo 4.1. For instance, in lines 6 and
7, a scaling parameter can be introduced to account for the off-grid loca-
tion of the sources—gridded in a discrete image. Also, the §(I) function
in line 7 can be replaced by a synthetic beam ¢ (1) (generally shaped as
a Gaussian) in order to mask the otherwise high artificial resolution of
the image. Current imaging systems rather iteratively clean the covari-
ance matrix instead, being represented as a sum of K rank-one matrices,
as shown in Sec. 3.3.1 [VWSI18, Sec. 4.2].

442 BPDN

For the phase transition diagrams presented in Sec. 4.6.1, the basis pur-
suit denoising (BPDN) program explained in (BPDng) and, for this
inverse problem application, written as

o =argmin ||o||; st |z — Amc|3<e
o

for a given noise level € is solved using the Proximal Gradient Method
presented in Prelim. 2.3.

443 uSARA

The unconstrained Sparsity Averaging Reweighted Analysis (USARA) [RW20;
Ter+22] is a sophisticated version of the Proximal Gradient method
(see Algo 2.1). It recently demonstrated state-of-the-art reconstruction
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results on the uncompressed visibilities model explained in Sec. 4.3.1.
Applied to our modulated ROP sensing model in (4.44), the minimiza-
tion problem associated with uSARA writes

¢ = argmin 1||Amo — z||3 + AR(0), (4.46)

oc€RN

for a reqularization parameter A > 0, and prior model
9N .
R(0):=p ) log (0 !|(¥*0)j| +1) + gy (o) (4.47)
j=1

where p > 0 and the +1 are used to avoid reaching zero values in the ar-
gument of the logarithmic terms. The “average sparsity” prior in (4.47)
consists of a positivity constraint and a log-sum prior!! promoting av-
erage sparsity in an over-complete Wavelet dictionary ¥ € RN*N,
More specifically, the dictionary ¥ is the concatenation of the first eight
Daubechies wavelets [Dau92] and the Dirac basis Iy.

The nonconvexity of the minimization task in (4.46) is addressed by
a reweighting procedure, where a sequence of convex surrogate mini-
mization problems are solved iteratively, each involving a weighted-/;
prior g given by

gl W) == [W¥" |1 + gy (7), (4.48)

where W € RN*N s a diagonal weighting matrix that needs to be
updated after each resolution of the surrogate problem.

The resulting reconstruction algorithm used for uSARA is a three-
level iterative scheme summarized in Algos 4.2-4.3. This seemingly
computationally intensive algorithm has been shown to require only
a fixed number K of proximal steps in the second for loop [RW21], and
a small number of iterations in Algo 4.3 when using an appropriate ini-
tilization strategy for the dual variable 29, The variables ¢1>0,8 >
0 are relative variation convergence criteria, L := ||A} Am|| is the Lips-
chitz constant, and 0 < y < 2/L is the stepsize. The inequality condition
on the stepsize is explained in Sec. 5.4.

1A non-convex approximation of the £y-norm.
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Algorithm 4.2 Re-weighted PGM for uSARA

Require: 0 <y <2/L,A>0,p > 0,6 e RN, & >0
: Set WO =1

1

2: repeat

3: fori=20,1,...do

4: e = 5'@

5: fork=0,...,Kdo

6: o) = PTOX, o( W(Q))(a'(k) — yAL(Ane® —z)) >FB
step '

7. 5,(i+1) = oK)

8: Wit = diag <p/ (p - ‘I’*E’UH))) > Reweighting

9 o) — F+D)

10: until ||(7(i‘+1) — oD y/ ||V, < &
11: return o(+1)

Algorithm 4.3 Dual Forward-Backward for computing prox, Ag( W) (z)
in Algorithm 4.2

Require: v >0,A >0, W,z € RN, 90 ¢ Span(¥*), ¢, >0

1: repeat

2: for] =0,1,...do

3: o) = gy (z — ¥ol)) > Projection on real positive
orthant

4: o+1l) — (I _prOX“Y/\HW'Hl) (U(l) + 111*0—(1—0—1)) >

Soft-thresholding

5: until ||(7(l+1) — a(l)Hz/Ha(l“)Hz <
6: return ¢(I*+1
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4.5 Recovery Guarantees for Batched ROPs

In this section, recovery guarantees are given for the batched ROPs
model. Next, two arguments are given why it is unlikely for D® to
satisfy a RIP in the separated ROPs approach. The section concludes
with an incomplete proof that motivates the likely provable success of
modulated ROPs.

The noisy measurements y are assumed to follow the batched ROPs
model

y=R®o + 7 (4.49)

for an additive noise ¢ and after a debiasing step removing the mea-
surement noise bias b (see (4.27)). Because of the multiplicity Q of the
DC component in the sensing operator ®, only its centered version ®y—
removing the Q DC samples—can satisfy a RIP,,,,,, as stated in As-
sumption 4.5. While SROP measurements can be debiased following
the procedure of Sec. 3.3.3, the DC component ¢y = (Fo ), can be easily
estimated from the autocorrelation of the measurements at a single an-
tenna. From this, the contribution of the DC component at each batch b
can be subtracted from the measurements as

Y}, =Y, — 00 RyGper. (4.50)

With this DC compensation, a centered version of the batched ROPs
model (4.49) is considered as

Y = R®o + ¢ (4.51)

We propose to estimate ¢ by solving the Basis Pursuit DeNoise pro-
gram with an /;-norm fidelity (or BPDNy,), i.e.,

o= aurg;rel]}zr}V le|li st [y — RPool1 <, (BPDNy, )

The specific £1-norm fidelity of this program is motivated by the prop-
erties of the ROP operator R, and this imposes us to set € > ||£||1 to
achieve feasibility.

We are interested in extending the guarantees given in Chap. 3 to
prove both ¢, /{1 instance optimality of BPDN,, and the RIP, /¢, for the
operator R® in (4.51). We indeed show below that R®, through its
dependence on R, respects the RIP, ;/, (Xk, mk, Mk).
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4.5.1 Instance Optimality of the BPDN,, Program

Let us start by showing that if the RIP,, /¢, holds for R®, then (BPDN, )
is instance optimal.

Proposition 4.1 (¢2//; instance optimality of BPDN/,). Given K,
if there exists an integer K > 2K such that, for k € {K', K+ K'}, the
operator R®q has the RIPy, /¢, (X, mg, M) for constants 0 < my <
My < co, and if

K
\/imKJrK/ = MK/\/? = 7>0, (4.52)

then, for all o sensed through y© = R®yo + ¢ with bounded noise
1G°|l1 < €, the estimate & provided by BPDN, satisfies

. o — o%lls €
oc—0l, <Cy————— + Dyg—, 4.53
| 2 < Co 75 N, (4.53)

for two values Co = O(My//y) and Do = O(1/7).

Proof. The proof follows exactly the proof given in Sec. 3.7.1. O
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Remark 4.5. As for classical additive white Gaussian noise, the statis-
tical noise component of the centered noise & remains upper bounded
with high probability. Indeed, with the total statistical noise matrix

Ny

its hollow version Ny, := N — Ny and A defined in (4.33), one can
write

I ANRIlL - < ol Nullp
Lem. 4.2

B B
Y INp)RlIE < e2v/Qy | Y- I(Np)nll?
b=1 b=1

< 6277\/5

B
Y H(Re)nll?
Corr. 4.1 =1

< o/ Q|Rullr :=€

which  holds with probability > (1 — exp(—c3Np))(1 —
2exp(—’7—cz%)) when setting M = C(t/n)*Q in Cor. 4.1.

452 R“:’gz/g1 for R(bo

The ingredients to prove the RIP,,,,, for R®; will be essentially the
same as in Sec. 3.3. The main difference compared to Chap. 3 here is
that the Fourier sampling is now allowed to be off-grid, and is obtained
through the B interferometric matrices {Zq, }7_,. To account for this,
we consider adaptations of Assumptions 3.3 and 3.5 that write as

Assumption 4.3 (Distinct non-zero visibilities). Defining the to-
tal visibility set Vo = UB_; V, \ {0} for the visibilities V, :=

1l
{M}]Qk:l defined in Sec. 4.3, we assume that all non-zero vis-

ibilities in Vy are unique, which means that |Vo| = Y2 |V =
Q(Q-1)B.
and
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Assumption 4.5 (RIPy, /4, for visibility sampling). Given a sparsity
level K, a distortion 6 > 0, and provided

Vol = Q(Q —1)B > 62K plog(N, K, 9), (4.54)

for some polynomials plog(N, K, 1/5) oflog N, log K and log 1/, the
matrix ®y = GoF defined in (4.16)" respects the RIPy, ,0,(Xk,0), i.e.,

(1=d)l2l* < o]} < 1+ )] Vo € Zk.

?The index 0 indicates that the DC component is excluded from the Fourier
sampling. Only the frequencies at 1 are computed.

A significant gain in these adaptations is the new Fourier coverage
that is denser than in the context of Chap. 3 because we consider B dif-
ferent sets {Q),}2_| of antenna positions. Now, in Assumption 4.5, this
is the total number of visibilities Q(Q — 1)B that must scale linearly
with the image sparsity K. This condition is less demanding than it the
one in Assumption 3.5.

The following proposition provides a RIP, /o, for asymmetric ROPs
using the property of concentration of ROPs in the ¢1-norm from [CCG15,
Prop. 1]. Because the ROPs are asymmetric here, compared to Chap. 3,
the bounds of the RIP will be tighter than in Prop. 3.3. The proof is
reported at the end of this chapter in Sec. 4.8.5.

Proposition 4.2 (RIP,,,;, for R®, using asymmetric ROP). As-
sume that assumptions [3.1,3.2,4.3,3.4,4.5,3.6] hold, with 4.5 set to
sparsity level Ko > 0 and distortion é over the set Xg,. For some values
C,c>0,if

Np > CKoIn(1EX), Q(Q —1)B > 4Kq plog(N, Ko, ),  (4.55)

then, with probability exceeding 1 — exp(—cNp), the operator R®
respects the RIPy, /¢, (X, Mk,, Mk, ) with

my, > 2@c1/1— 5V¢'§°', and My, < $@cyy/T+0Y %0‘, (4.56)

where the constants ¢y and ¢, depend only on the sub-Gaussian norm of

the random sketching vectors {ocp}gil and {:Bp},le hidden in R (see
(4.30)).
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4.5.3 Doubts for Separated ROPs

Here we provide two arguments explaining why the separated ROP op-
erator D® probably do not have the RIP, /¢,.

Intuitive argument As stated in Assumption 4.5, the RIP,,,,, is as-
sumed for the total (nonzero) visibility sampling GoF, and not for the
individual samplings { G,0F}5_,. In the separated ROPs approach, as is
clear from (4.29), the centered forward model writes
R1G1o
y = : Fo.
RpGpo

Statistical argument Because the separated ROP measurements ,
follow a different statistical distribution depending on the interfero-
metric matrix Zq, that they sketch, it is not possible to control the ROP
¢1norm as in Lem. 3.3. To demonstrate this, we will show by using
[Ver12, Prop. 5.16] and [CZ+15, Lem. 7.2] that the ¢;-norm of the mea-
surement ﬁHyHl does not concentrate nicely around the Frobenius

norm of the total interferometric matrix || Z||p.

The subexponential norm of each i,, writes

1Tpllr = Ko B Zx,) gy

_ 1 * 1/q
= 21;1195(113 |:‘<‘prﬁpb/l.ﬂb>|q:| ) (4.57)
< K[| Zao, s

with K := ||a||y, and where the last inequality comes from [CZ+15,

Proof Lem. 7.1.]. Let us define the random variable

B Np
Z:=|lglh —Ellglh = Y Y (17| — El7m)).
b=1p=1

Z is composed of BN, independent centered random variables, with
|7,lly; < K[| Zq,||r, as shown in (4.57). The result [Ver12, Prop. 5.16]
provides a concentration of a sum of independent centered subexpo-
nential random variables. Applied to our problem, it writes

lPHZ\>t]<2exp<—cmin< £ t ))

K2 max|| Zo, [}’ K max|Za, s

(4.58)
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Hence,
P | 55lZ| > Kt max||Zo, [lp| < 2exp(—cNpBmin(t,£)).  (4.59)

Using [CZ+15, Lem. 7.2], one has
31Za,lle < EN,1h < 1 Za,llF.

Combining this with (4.59) gives

B B
P |55 bz 1Za, [l — Kt max||Zo, [Ir < 75/ 7lh < Kt max|| Za,[lr + 5 bz 1Zoy, e
=1 =1

>1—2exp(—cN,Bmin(#, t)).
(4.60)
It appears in (4.60) that a concentration of ﬁ |7]|1 around || Z||f is un-
reachable, and (4.60) can thus not be easily combined with the RIP,, ,,,
in Assumption 4.5 of the Fourier sampling. Indeed, the inequalities that
could be used to replace these norms by || Z||r are

max|[Zo, [[r < | Z]le

1Zoylle = 1 Z1[e

1Zayllr < Bl Z][,

L
L

and it is not possible to provide tight bounds from it by this way.

454 Hope for Modulated ROPs

The modulated ROP sensing model in (4.35) is hard to analyze theoret-
ically. It requires to study the concentration property of the combined
modulations and ROPs, i.e., the combined operator MD. This analysis
is out of the scope of this thesis. However, thanks to the ROP interpre-
tation highlighted in (4.40), we claim this scheme mimicks the batched
ROP scheme sufficiently closely to envision recovery guarantees to be
proven later.

It is worth mentionning that, similarly to Lem. 3.2, it is possible to
control the expected ¢;-norm of the modulated ROPs. We formalize
this in Lem. 4.1.
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Lemma 4.1 (Controlling the expected modulated ROP ¢;-norm).
If the random vectors w, B are filled with i.i.d. random variables with
a unit second moment (y; = 1) and bounded sub-Gaussian norm
llapllg IBplly, < x (with x > 1) Vp € [Np], then, for any hol-
low matrix T € HOB, the random variable & := een*LP (with
€,€ ~ U{%1}) is sub-exponential with norm |||y, < k2, and there
exists a value 0 < ¢, p < 1, only depending on the distribution of the
«;’s and B;’s, such that

cupllZllF < 7onm Bl Am (D)l = E[] < [|Z]lr, (4.61)

where we defined the modulated ROP operator Ap, : H € HB

Am(H) = ((De,ty) (De, B,)", H) PN e €N with the

modulations contained in D¢, and D¢, defined in (4.39).

Proof. After observing that

EeznplS| = Eopla”ZB|

because flipping the sign of « (resp. B) with € (resp. €) has no effect on
the expectation, one can directly invoke [CZ+15, Lem. 7.2]. O
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4.6 Recovery Analysis

4.6.1 Phase Transition Diagrams

We provide empirical reconstructions obtained from extensive Monte
Carlo simulations with S trials on the reconstruction of sparse images
o € Yg with N = 100 x 100 pixels from the (noiseless) modulated ROP
observation model 2 = MDGFo derived in Sec. 4.3.3. The Basis Pursuit
DeNoise recovery program is used to compute the estimate o as

o = argmin ||o||; s.t. ||z— MDGFo||, <1072 (4.62)
o

Remark 4.6. Using SPGL1", (4.62) is solved in its equivalent un-
constrained formulation [VF08] using the proximal gradient (a.k.a.
forward-backward) algorithm [Bec17; PB14]. While the constrain is
imposed in the {>-norm hence deviates from the theoretical setting es-
tablished in Sec. 4.4 that uses the {1-norm, it avoids solving an internal
minimization problem for computing the proximal operator of that con-
strain. Despite these differences, we provide similar conclusions than in
Sec. 4.4 for the sample complexity, as shown below.

?(Python module: https://github.com/drrelyea/spgll).

We consider the reconstruction of a non-vignetted 2-D image, i.e.,
0° = 0. A vectorized image ¢ € RN was generated with a K-sparse
support picked uniformly at random in [N], its K non-zero compo-
nents being all set to 1. An example of a sparse sky!? image with
K = 25 is shown in Fig. 4.8(a). The partial Fourier sampling induced
by the NUFFT operator GF is fixed by a realistic uv-coverage of the
VLA [Tho+80] with Q = 27 antennas and B = 100 batches correspond-
ing to a total integration time of 5 hours. At each simulation trial, we
used NppB sketching vectors a, ﬁpb € CQ v e [Npbl, iid. with

(@pp)g . ~ U027 g € [Q], and similarly for B,p- The Bernoulli mod-
1.1.d.

o]

ulation vectors {v,,} '™ were randomly picked as 1,, ~ U{£1}.

In Fig. 4.8-4.9, the success rates—i.e., the percentage of trials where
the reconstruction SNR exceeded 40dB—were computed for S = 80 tri-
als per value of (K, Npb, N ), and for a range of (K, Npb, Nm) specified
in the axes. The transition cube in Fig. 4.8(b) is shown in addition to

12The shown image has been slightly blurred with a Gaussian kernel to enhance
visual appeal.
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Fig. 4.8 (a) Example of a randomly generated K-sparse sky with K = 25. (b) Phase
transition cube. The diagrams of Fig. 4.9 in a 3-D projection to better see the interde-
pendence between the quantities (K, Nm, N,p,). For a fixed number of measurements

P
pr X Npm, the zone 1—with smaller pr—has a lower computational cost than zone
2

the maps of Fig. 4.9 as it provides a better insight of the dependence
between the variables (K, Npb, Np) than the maps alone.

Success rate

5
10 60 80 100 120 140 10 60 80 100 120 140
b

(a)
Fig. 4.9 Phase transition diagrams showing Ny, X N, modulated ROPs of B = 100
different 27 x 27 interferometric matrices for a K-sparse image ¢ (with Ny, = 50 in
(@), Npp = 25 in (b), and K = 25 in (c)). One considers the uv-coverage shown in
Fig. 4.4, ROP using circularly-symmetric unit-norm random & pp, ﬁpb’ and Bernoulli

modulation vectors 7, -~ {£1}, Vb € [B], p € [Npp], m € [Nm]. Each pixel is
L1.d.

constructed with S = 80 reconstruction trials solving (4.62) where we consider success

if SNR> 40dB. The probability of success ranges from black (0%) to white (100%).

Dashed red lines highlight the transition frontiers.

We observe in Fig. 4.9(a-b) that high reconstruction success is
reached as soon as NppNm > CK, with C ~ 5. This is closely re-
lated to the sample complexity obtained for the batched ROP scheme
in Prop. 4.2, where Np > C’K were needed (up to log factors). Here,
the transitions diagrams seem to indicate that Ny, and N, play the
same role in the sample complexity, with only the product NppNm
mattering. This is also confirmed in Fig. 4.9(c) were the transition
frontier in red describes an hyperbola at (pr,Nm) coordinates satis-
fying NppNm ~ 150. A comparison between the sample complexity

NppNm needed for the modulated ROPs and N, < NppNm needed for
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the batched ROPs would have been compelling, but the batched ROP
model is impossible to compute because of the cost N, Q?B of comput-
ing the forward model as given in Table 4.3.

Reminding the different complexity costs of the modulated ROP
scheme in Table 4.4, it appears that favoring more modulations Np,
than ROPs Ny, for a fixed budget N, Nm = cst reduces the acquisi-
tion cost Np»Q as well as the weight of the computational cost Ny, BQ?
of the ROPs which have a more signifant impact than the sign-flipping
modulations. The conclusion is that the upper-left side (zone 1) of the
(pr, Np) slices in the success region of the transition cube in Fig. 4.8
offers a reduced acquisition cost and forward modeling computational

complexity while ensuring image recovery.

Table 4.4 Reminder on the costs of modulated ROPs at different stages: during the
acquisition, for the forward model computation, and the memory storage.

Acquisition | Forward model | Memory
prQ prB(Q2 + Nm) prNm

250
1.01 I-,/Fv_- -
I /
I
0.84 t 200
I
£ 06 %
P .01
g i ;
2 ! 1)0k
8 I
2047 |
N I 100
0.21 |
! —— modulated ROP
00 : J J -=--- no ROP 50
' 25
0 20 40 60 80 100
B

Fig. 4.10 Phase transition curve showing prNm = 25 x 50 modulated ROPs of B
different 27 x 27 interferometric matrices for a K-sparse image o, and K varying into
{25,50,100,150,200,250}. One considers the uv-coverage shown in Fig. 4.4 with a
number of batches B ranging from 1 to 100 and corresponding to a proportional in-
tegration time. The ROPs are obtained using circularly-symmetric unit-norm random
&pb, Bpp, V0 € [B], p € [Npp], and the modulations using Bernoulli random 1,

Vm € [Nm]. Each pixel is constructed with S = 80 reconstruction trials solving (4.62)
where we consider success if SNR> 25dB.

In Fig. 4.10, which displays several transition curves of the success
rate vs. B for different values K with (Np,, Nm) = (25,50), the failure-
success transition is shifted towards an increasing number of batches as
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K increases, and the transition abscissa are equispaced for equispaced
sparsity values K. This is in accordance with the sample complexity
condition Q(Q — 1)B > 6 2Kplog(N, K, §) set in the RIP;, /4, Assump-
tion 4.5 for the visibility sampling. It also shows that it is not possi-
ble to recover the image from a single batch (B = 1), because the as-
sociated Fourier sampling is not dense enough to obtain the RIP,, /.
Interestingly, the number of measurements related to each curve in
Fig. 4.10 remains unchanged, and equal to NppNm = 1250 compared
to Q?B = 72900 in the worst case; representing a compression factor
of 98%. For the highest sparsity levels (K € {200,250}), the condi-
tion NpyNi > CK observed in Fig. 4.9 is not consistently satisfied for
(Np, Nm) = (25,50), as suggested from an extrapolation of the transi-
tion curve in Fig. 4.9(b). This likely accounts for the increasing variabil-
ity observed in the curves for higher values of K.

The success rate is also shown for the uncompressed scheme in
dashed lines. The sparse image is recovered with a minimal number
of batches B < 5, also shifted towards the right for increasing spar-
sity values K. This confirms that the total number of measurements
needed for image recovery is around 1250, and that more visibility mea-
surements contain redundant information about the image of interest.
Obviously, the information contained in the modulated ROP measure-
ments Z = MDGFo was already included in the visibilities GFo, so
MD can only yield additional information loss about ¢. The difference
is that the number of antennas Q and batches B are usually imposed by
the acquisition setting, while the number of ROP and modulations is
free and controllable.

Despite the arguments against the separated ROP model regarding
the theoretical guarantees in Sec. 4.5, Fig. 4.11 shows that satisfying re-
construction performances can be attained in a noiseless setting with
this scheme. In fact, with a number of measurements Ny, B (to be com-
pared with pr Np), the transition frontiers—with the same dashed red
lines than in Fig. 4.9—seem to indicate that the number of batches B
plays a role similar to the number of modulations Ny, for the modu-
lated ROP scheme. However, the modulated ROP remain more advan-
tageous because (i) B is generally imposed by the acquisition context,
while tuning Ny, is much more flexible. It is easier to construct a suf-
ficient number NppNm of modulated ROP measurements for a target
reconstruction SNR than Ny, B separated ROP measurements. (i) As
explained above, the computational complexity can be significantly re-
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(a) (c) B
Fig. 4.11 Phase transition diagrams showing N, B separated ROPs B different 27 x
27 interferometric matrices for a K-sparse image o (with B = 50 in (a), Npp =25in (b),
and K = 25 in (c)). One considers a fraction B/100 of the uv-coverage shown in Fig. 4.4
and ROP using circularly-symmetric unit-norm random &y, B,,;,, Vb € [B], p € [Npb].
Each pixel is constructed with S = 80 reconstruction trials solving (4.62) where we
consider success if SNR> 40dB. The probability of success ranges from black (0%) to
white (100%). The dashed red lines, highlighting the transition frontiers, are exactly the
same as in Fig. 4.9. The level curves with compression factors (97.4%, 98.7%, 99.5%) are
given in (c).

35 45

duced by decreasing Ny, and increasing Np, in compensation'®, which
is not possible with separated ROPs. (iii) In a scenario where Ny, B is
highly sufficient for image reconstruction, the modulated ROP repre-
sent an additional compression operation if N, < B with enough mea-
surements Npp Nm. (iv) The theoretical arguments provided in Sec. 4.5.

4.6.2 Realistic Reconstructions

In this section, we present reconstruction analyses conducted in a super
realistic numerical setting. These analyses could not have been possi-
ble without a fruitful collaboration with a research group at the cut-
ting edge of our current understanding of RI imaging—the BASP lab-
oratory'* at Herriot-Watt University in Edinburgh—who granted me
access to their latest reconstructions algorithms presented in Sec. 4.4,
to uv-coverages associated with many real antenna arrays such as the
VLA [Tho+80], MeerKAT [Asa+21], ASKAP [McC+20], and LOFAR
[Haa13], and also to Cirrus, a UK National Tier-2 HPC Service at EPCC
funded by the University of Edinburgh and EPSRC (EP/P020267/1).

Numerical setting

The results that will follow are non exhaustive but still deliver some
key messages that validate the benefit of the compressive imaging ap-
proach described in this chapter. Similarly to Sec. 4.6.1, we numerically

13As long as Ni, remains negligible compared to 25.
4https:/ /basp.site.hw.ac.uk
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study the reconstruction of a groundtruth image observed by the inter-
mediate of the forward imaging operators. In this section:

m We use uSARA to reconstruct the image from the classical (4.16)
and modulated ROP (4.35) forward imaging models. The param-
eters of uSARA (see Algo. 4.2) are set to different values depend-
ing on the experiment. We do not provide details about these
parameters in this section.

m We apply a uniform weighting (see [Bri95]) of the visibilities to
improve the reconstruction quality. A comparison of different
weighting schemes is expected for the paper in preparation for
MNRAS. As explained in Sec. 4.7, it is still possible to apply a
visibility weighting in the modulated ROP sensing scheme at an
increased acquisition cost.

m We do not provide the reconstruction times, intrinsically related
to the computational complexities given in Table 4.3, because the
analyzes have been obtained with a naive composition of the op-
erators MDGF involved in the forward imaging model (4.35).

® We do not display the dirty images ¢ 4irty and residual images
r = 04y — R{®"®}0, that are the mere application of the ad-
joint operator to the final measurements and the difference be-
tween the dirty image and the estimate of the image projected
with the adjoint-forward imaging operators, respectively, because
we compare the use of the compressive scheme to the classical
scheme rather than study the image reconstruction algorithm and
its fine-tuning.

Our test image, depicted in Fig. 4.12(a) is the 3c353 galaxy resized to
N = 256 x 256 pixels. It has a peak value equal to 1 and dynamic range
of 7546.2. Fig. 4.12(b) shows a uv-coverage associated to the MeerKAT
array. In the following analyzes, the total observation time IB = 8h10m
will remain constant, yielding similar Fourier coverages, and three in-
tegration times I € {800, 80,80}s will be considered.

Results

Fig. 4.13 provides curves depicting the SNR (defined in Def. 2.3.2) and
log SNR of the image estimate using uSARA. The log SNR [Ter+22] that
compares the groundtruth image to the estimation error in logarithmic
scale is defined in Def. 4.6.1.
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Fig. 4.12 (a) The 3c353 galaxy groundtruth image with N = 2562 pixels and shown
in logarithmic scale. (b) The uv-coverage of the MeerKAT [Asa+21] array, shown with
B =103.
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Fig. 4.13 Transition curves using uSARA. (a) SNR, and (b) log SNR in function of
the number pr X Np of modulated ROPs for three different number of batches: B €
{37,368,3680} corresponding to Q?B/N =~ 1, 10, 100, respectively. The five pairs
in this experiment are (Np,, Nm) € {(10,100), (20,200), (30,300), (50,500), (80,800)}.
The dashed lines represent an upper bound associated to the reconstruction in the
classical scheme.

Definition 4.6.1. The log Signal-to-noise ratio (in dB), which compares
a ground truth signal u to the error u — u made by its approximation u
in logarithmic scale, is defined as

log SNR(u, %) = SNR(rlog(u), rlog(u)) (4.63)
where the rlog function converts an image to the logarithmic scale as

max (u) (

d
rlog(u) := log,(d) log,y (———u+1) (4.64)

max(u)
where d is the dynamic range.
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In Fig. 4.13, the three shades of blue correspond to a number of vis-
ibilities Q(Q — 1) /2 (shown Q2B in the legend for simplicity) approxi-
mately equal to 1, 10, and 100 times the image size N from light to dark
blue.

The dashed lines show the reconstruction quality with the classical
imaging scheme, i.e., with only the forward operator ® = GF involved.
The quality of the reconstruction is improved for a higher number of
visibilities.

For the image reconstruction experiments with the modulated ROP
model and plotted in solid line, the number N Npp, of modulated ROPs
is set within the range [0, N] where it is cheaper to store the modu-
lated ROPs rather than the dirty image, which is sufficient for uSARA
to compute an image estimate.

In all solid line curves, the compression factors NmNpp/(Q(Q —
1)/2) of the modulated ROP compared to the classical scheme are
implicitely available and vary from 0% to 100%, 10%, and 1% for
Q?B/N =~ 1, 10, and 100, respectively. It is observed that both the
SNR and log SNR increase with the number N Npp of modulated ROPs
and are upper bounded by the performances of the classical scheme be-
cause the Bernoulli modulation and separated ROP operators MD can
only lose part of the information contained in the visilibities GFo. Both
the SNR and log SNR curves are higher for higher compression factors,
showing that the compressive scheme has more interest when the num-
ber of visibilities Q(Q — 1) /2 is orders of magnitude above the image
size N. In particular, the reconstruction using (pr, Nm) = (80,800)
reaches the same SNR and log SNR than the classical scheme from
an amount of modulated ROPs which is only 1% of the number of
visibilities. Moreover, the quality using (Npp, Nm) = (80,800) is en-
hanced compared to the reconstruction with the classical scheme with
QZB ~ N, i.e., with the same data size, which shows that the compres-
sive scheme conserves more information about the visibilities than just
dropping some visibilities to reduce the data size.

Fig. 4.14 displays the reconstructed images associated to the curves
in Fig. 4.13. The first column shows the image reconstructed with the
classical scheme and for three different integration times, as explained
around Fig. 4.12. It is observed that the reconstruction qualities are
similar, which makes sense as the three associated uv-coverages are
similar and look like Fig. 4.12(b). The second and third columns re-
spectively show the reconstructed images with the modulated ROP
scheme using the smallest and highest number of modulated ROPs,
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i.e., (Npb, Nm) = (10,100) and (Npp, Nm) = (80,800), respectively.

While the top center reconstruction completely failed, the bottom
right image confirms that the quality of the reconstruction is similar to
the reconstruction with the classical scheme, shown in the bottom left
image.

The reconstruction SNRs are similar in all three images of the bot-
tom row, but a too small number of modulated ROPs fails to reconstruct
the faint emission, i.e., the very low values in the groundtruth image,
which explains the drop in log SNR observed in Fig. 4.13(b).

P

Npb, Nim) = (10, 100) (Npb, Nm) = (80, 800)
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Fig. 4.14 Reconstructed images (in logarithmic scale) corresponding to the curves of
Fig. 4.13. The SNRs and log SNRs are shown in the top right corner of each recon-
structed image.
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4.7 Discussion

What has been done

In this chapter, we built on the contributions of Chap. 3 to propose the
first computationally efficient compressive imaging technique for RI. The
novelty of the proposition was to show that random beamforming is
tantamount to applying ROPs of the covariance matrix, and that these
ROPs can be efficiently combined over time by Bernoulli modulations.
Compared to Chap. 3, we showed with Fig. 4.4 that the rotation of the
Earth provides a denser Fourier coverage of the image.

We provided recovery guarantees and observed the derived sam-
ple complexities under numerical conditions. The success of this com-
pressive imaging approach was validated by extensive reconstruction
analyses in a super-realistic numerical setting.

About Calibration

In pratical imaging systems, the antenna gains, or also the projec-
tion of their position onto the plane perpendicular to the pointing
direction is not accurately known. A calibration step consists in es-
timating these unknown parameters by imaging a known image o
and fitting the parameters to the observed data. As announced
in Sec. 4.3.1, we avoided discussing the calibrations aspects in the
plain text because they were out of the scope of this chapter. How-
ever, we point out that, because the ROP models (4.29), (4.30), and
(4.35) explained in Sec. 4.3.3 are linear and independent transfor-
mations of the measurements, they remain compatible with the latest
calibration methods [SW14; Dab+21b].

Preprocessing calibration: The bilateral ROP model (3.22) for a single
batch writes as

iy = diag(AWFD,F*W*A"),

where the operator W models the effect of the antennas. For a known
signal ¢* and associated ROP vector #*, a preprocessing calibration
phase may be performed to estimate W by iteratively solving a min-
imization problem of the form

W™ — arg min Hg* — diag(AWWEFD,.F*'W*A")|3,  (4.65)
w
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and the addition of the ROP operator A does not make the minimiza-
tion problem (4.65) more difficult than without ROPs. The calibration
technique (4.65) is well-known as an Alternating Direction Implicit (ADI)
approach [SW14].

Joint calibration and imaging: The modulated (and other) ROP
model is also compatible with joint calibration and imaging. Indeed,
simplifying!® the idea of [Dab+21b] yields the following joint mini-
mization problem

&, G = argmin 1|z — MDGFc |3+ Ri(c) + Ra(G), (4.66)
(,G)

with regularization terms R; and R,. Eq. (4.66) can be solved itera-
tively by alternating between a minimization with respect to ¢ by fixing
G,ie,
eV = argmin 1|z - MDGWFo |3+ Ry (0),
o

and the converse

G** = argmin 1|z — MDGFo"V |} + Ry(G), (4.67)
G

The imaging problem has been covered in this chapter and can be
solved with the recovery algorithms presented in Sec. 4.4. Since M and
D are linear operators independent of G, the calibration problem (4.67)
can be solved, with one step of the PGM (see Algo. 2.1) for instance as

G+ = proxz, (D*M*(MDGFo*1) — z)glk+1r),

Remark 4.7. The compatibility of the ROP models with the current
calibration techniques could not be obtained with a compression scheme
that would store the dirty image by backprojecting the measurement
vector as O ity = F *G*y [Vij+17]. Indeed, in such a situation, the
dependence in the antenna contributions becomes quadratic and cannot
be solved with linear or bi-linear techniques anymore.

While the reduced complexity of the modulated ROP forward
model requires the precomputation of the composed operator MDG,
which can be an issue for a joint calibration-imaging procedure, we

15[Dab+21b] actually considers a bi-linear formulation similar to (4.65).
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foresee future works that may consider a parametric compressed op-
erator Gy := MDG,y and whose associated calibration phase would
consist in learning the parameters 0 as

0D = argmin 1|z — GyFc |3 + R(8) (4.68)
0
for a known image o.

Limits and Open Questions

Polarimetry: Like in Chap. 3, we considered a scalar theory, i.e., we
imaged the intensity distribution of the sky. An open question is to
extend our contributions to polarization measurements that indicate the
distribution of the magnetic fields within the source [TMS17]. Such an
extension would then sense the Stokes parameters distribution of the sky,
and correlating the measurement vector would provide Stokes visibili-
ties.

Holographic matrix: While we provided in Table 4.3 the computa-
tional cost of the classical visibility scheme y = ®¢ only for the for-
ward model, it has been observed [Sul+12; Mon+23] that recovery al-
gorithms that require only the dirty image for the reconstruction—such
as the PGM—could precompute a holographic matrix

H:= G'G e CN*N, (4.69)

The benefit of H is that it compresses the product of two big rectangular
matrices G € C/*BXN , avoiding the instantaneous storage of | 2B values
during the reconstruction process, hence reducing the computational
cost of the recovery algorithm.

However, as discussed above, composing G and G* can be an issue
for a joint calibration-imaging scheme. We are not aware of works tack-
ling this problem. The advantage of the parametric calibration in (4.68)
is that it still contains a single application of G, while (4.69) unavoid-
ably contains two.

Weighting the visibilities: Weighted minimization schemes only re-
quire an image-to-measurement vector forward model. For instance,
the weighted {i-minimization scheme idea relies on the distribution
of the sparsity of the image among its decomposition levels [AH21,
Chap. 12]. On the other hand, the weighted least squares imaging scheme
in [VWSI18, Sec. 4.4.1] reweights the visibility measurements with the
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inverse of the noise covariance. For these two weighted schemes, we
see no incompatibility with the modulated ROP model, whose noise
model has been characterized in Sec. 4.3.5.

However, it seems that the variable density visibility distribution ob-
tained at the output of GFo is better reweighted for stable and robust
image recovery [KW14, Th. 3.1]. During the acquisition, the random
beamforming prevents direct access to the visibility matrices {Z o, }_,
hence any access to weighting. Hopefully, in the ROP view (4.40) re-
minded as

Zmp = (De,p)"L(De,B,),
the interferometric matrix Z can be weighted with any matrix W ¢
HOB given its decomposition as a sum of rank-one matrices, i.e., W =
Y r; wyw;. Indeed, the visibility-weighted measurement can be written
as

ZmpW = (DEm“P)*(W ) I) (ngﬁp)

Dem“lﬂ Z wkwk Demﬁ ) (4 70)

K
Z Democp wk (D'gmﬂp . wk).

Eq. (4.70) shows that the visibilities can still be weighted with the mod-
ulated ROP model, but at the cost of an increased sample complexity,
multiplying the number of necessary ROPs by K. This suggests that a
tradeoff between (i) improved image recovery by visibility weighting,
and (ii) low-rank visibility weighting, must be found in order to still
benefit from a compressive imaging scheme.

Reconstruction with AIRI and R2D2: The Artificial Intelligence for
Regularization in Imaging (AIRI) [Ter+23; Ter+22] and Residual-to-Residual
DNN series for high-Dynamic range imaging (R2D2) [A+23] are among
the latest state-of-the-art image reconstruction algorithms for radio-
astronomy. Both algorithms are compatible with the modulated ROP
model.

AIRI is a Plug-and-Play (PnP) approach. In a nutshell, it replaces
the proximal regularization operator with a denoiser D in a Forward-
Backward algorithm. D is designed to remove i.i.d. Gaussian random
noise from an image. While it can take many forms, the chosen de-
noiser is an SCUNet [Zha+23]. Targetting high dynamic range imag-
ing of complex structure with diffuse and faint emission across the
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field of view, D is specifically trained on a database of 2235 radio-
interferometric images of size 512 x 512 explained in [Ter+22]. Some
details about the convergence of AIRI in function of the firm non-
expansiveness of D and the heuristically set noise level for the denoiser,
and its relation to the exponentiation factor of the target image, can be
found in [Ter+23].

We provide in Algo 4.4 a version of AIRI that uses the modulated
ROP model. It simply consists in replacing the classical forward oper-
ator GF by the modulated ROP operator Ay, := MDGF. The variable
¢3 > 0is a relative variation convergence criterion, L := ||AjAm| is
the Lipschitz constant, and 0 < 7y < 2/L is the stepsize.

Algorithm 4.4 AIRI
Require: 0 < v < 2/L, denoiser D, c©@ RN, & >0
1: repeat
2 fork=0,1,...do
3 et = D(e® — yAX (Ao ® — 2)) > PnP-FB step
4 until |[c®D — c®) |, /| c*HD ||, < &
5 return ¢kt

In our notation (see (4.16)), using R2D2 on the classical visibilities
writes as

ok = gk=1) 4 N (T(k_l)), (4.71)

where:

m 0 is the k-th iterate of the image,

® Ny is a Deep Neural Network (DNN) with learned parameters
0", and
m ) = Tdirty — kR{®@*®}o k1) is the residual image where the

dirty image 0 giryy := kR{® v} is the normalized backprojected visi-
bilities and « is a normalization factor.

R2D2 can also be used on the modulated ROP model by consider-
ing the forward operator ®,, := MD® that contains the ROP and
Bernoulli modulations (see (4.35)). In this case the DNNs must be
trained specifically from modulated ROP measurements with a training
time of around 300 GPU*hours.

Image reconstruction with the modulated ROP scheme using AIRI
and R2D2 is out of the scope of this work.
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Link with compressive learning: In the end, the goal of radio-
interferometric imaging is to estimate a 2-D map ¢?(I) of the variances
of complex normal random distributions CN'(0,02(1)). The proposed
compressive sensing scheme has similarities with the compressive learn-
ing framework whose goal is to compute an estimate [Sch21, Fig. 2.1]

0 = argmin || Y~ ®(x;) — Ae(Po)||,- (4.72)
0cO i=1

of the parameters 6 of a random distribution Pg from a minimal num-
ber of sketches ®(x;) where ® is the sketching function, i € [n], and
X1, Xn ~iid. Po.

In the context of this chapter, the analogy with (4.72) is that the pa-
rameters of interest are the discrete map ¢ and can be estimated from
the following minimization problem

I B
oc=argmin| ) ) Y& X 1] [1] By, — MDGFc||,  (473)
v i=1b=1

where the first term is related to the acquisition process (remember
(4.38)) and the second term is related to the image reconstruction (re-
member the modulated ROP model (4.35)). The sketching function,
depending on the signal set

X = U Xy, Xy = {xp[i], i € [I]},
be[B]

defined in (4.13) with xp[i] ~jiq. CN(0,¢?(1)), could be seen as
D (xp]i]) := 'Ymb‘x;bxb [i]x} [i]ﬁpb'

and the compressive learning operator .Ag, depending directly on the
parameters o of the distribution, could be interpreted as

As(CN(0,0%(1))) := MDGFo.

| 181



4 | Compressive Radio-Interferometry

4.8 Appendix

4.8.1 Connections to MCFLI

The commonalities and differences between RI and multi-core fiber
lensless imaging (MCFLI) are reported in this section. Let us first re-
call the expression of a single-pixel measurement in MCFLI:

y=ua"Tolwfla+n. (4.74)

Eq. (4.74) must be compared with the ROP model for radio-interferometric
measurements in (4.27).

Common features The role of the Q antennas in compressive radio-
interferometry (CRI) is analogous to that of the Q cores in MCFLI. In
both cases appears an interferometric matrix L encoding Fourier sam-
ples (or visibilities) of a (stationary) 2-D image of interest taken pre-
cisely in the difference set (2 — (). The complex exponential terms (resp.
e % Pi* and e Pa (t)Tl) of the Fourier transforms encoded into the inter-
ferometric matrices come both from a dephasing of the electromagnetic
signal due to the core/antenna location. The observed images are both
vignetted—f° := wf and ¢° := g%c?. In either applications, a compres-
sive imaging procedure is considered by applying random ROPs of the
interferometric matrix. The sketching vector & (and B for CRI) is set by
choosing the complex amplitude of each core (resp. antenna).

Differences In MCFLI, we image a 2-D plane perpendicular to the
distal end of the MCF. In CRI, however, we consider an image in
direction-cosine coordinates I. The MCFLI application is completely sta-
tionary—there is no dependence on time t. The measured signal y is
deterministic; no expectation needs to be approximated by summing
many measurements over time. In CRI, the time dependence of the
antenna locations can be exploited to sense many interferometric ma-
trices, thus obtaining a denser Fourier sampling than in MCFLIL. This
is why we get only Z, in MCFLI, but {Z, }£_; in CRL In MCFLI, the
SROPs are imposed by the sensing mechanism. In CRI, the ROPs are
pursued in order to compress the measurement data. Thus, asymmetric
ROPs are fully accessible. Furthermore, the noise models are different.
In (4.74), the noise n is the thermal noise at the single-pixel detector. In
(4.27), the final measurements are obtained by correlations. The ther-
mal noise at the receivers is translated into a deterministic bias «*XZ, 8
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that can be removed. The additive Gaussian noise sources in the visibil-
ities comes from the statistical noise induced by the sample covariance
and some other model imperfections.

4.8.2 About Beamforming

This section highlights the link between focused beamforming and the
raster-scanning approach presented in Sec. 3.2.2 and presents the adap-
tive beamforming technique.

Focused Beamforming is Raster-Scanning

If constant weights are chosen as « = 1 during the entire acquisition of
a batch b, as clear from (4.27), the noiseless component of the measure-
ment is given as

Iy = 1TIQb [0’0]1.

From the definition of the interferometric matrix in (4.11), it can be further
i2m T

developed as
Q i 2
i/, = © l A bq
= [ o0 Y

If (4.75) seems familiar, it is because we already met it in Chap. 3.
Analogously to (3.9), we just rediscovered the array factor ¢q,(I) =

dl. (4.75)

Z{?:l elzTnp b of the antenna arrangement (). For the same reasons as
explained in Sec. 3.5 for the Raster-Scanning mode in MCFLI, y;, probes
the content of ¢° around the origin (I = 0) if the antenna arrangement is
dense enough over the support of 6°. Other directions can be focused
using a tilt vector y(0) := (exp(—2%0'1 ))qul' The resulting sensing
writes

o0 = (8)* Lo, [0°]7(8) = 1" L, [T-e0°]1,

with the translation operator Tp@(l) := ¢(I — 0) and a raster-scanning
of the sky can be considered by planning an RS path © traveling in all
directions, as depicted in Fig. 3.5(top).

Adaptive Beamforming

The spatially-varying convolution model resulting from a beamforming/raster-
scanning approach is not new. There exist smarter techniques of
adaptive beamforming that take into account the spatially-varying Point
Spread Function (PSF) of the antenna array. For instance, the minimum
variance distorsionless response technique [VWS18, Section 4.1.2] selects
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the beamforming vector 7y(I) such that, for a given direction I, the re-
sponse is distorsionless in the target direction, and the variance out of
that direction is minimized. With the knowledge of the covariance ma-
trix C, the corresponding constrained minimization problem reads

(1) = argmin w*Cw, s.t. w a(l) =1, (4.76)
w

: - RS S ZEON
with the geometric delays of the antennas a,(I) := e 21" *, Vg €

[Q]. The solution to (4.76) is w(l) = % This type of adaptive
beamforming technique could also have been implemented for MCFLI

in Chap. 3.

4.8.3 Matrix form of interferometric measurements

Interferometric measurements associated to a discretized (vignetted)
image find a natural matrix formulation. Indeed, writing the discrete
image o = (0°[n]) e,z € RY with N = N7 and
o°[n] :=0°(nA) =0°(1) Y. 6(1—nA), (4.77)
ne[N]?
the definition of the interferometric matrix in (4.11) can be particular-
izedtooand tot = (b —1/2)MT to give

(Zaylo]), =02 Y onle t Pamri) n, (4.78)
! ne[N]?

In order to express Zq, [¢] in discrete matrix form, the trick consists in
inserting } e, 2 Onr = 1 into (4.78) so as to get

—i2m

(Talo)) =82 ¥ e HnPlonlg,e PN (@79)

nn' €[N1]?

Defining the matrix of complex exponentials I, € C9*N s.t. (T})n :=

2 T, 1 .

Ae %" Pie for the 2-D component n associated to the flattened index n
and the diagonal matrix D, & RN*N filled with the vectorized discrete
image o, the interferometric matrix at batch b writes

IQb [0’] = FbD(,Fi. (480)

While (4.80) is already a matrix formulation, it is common to write the
decomposition I'y, := W, F where F € HN is the 2-D fast Fourier trans-
form (FFT) matrix and W}, € C2*N is a matrix interpolating the on-grid
frequencies of the FFT to the set of antenna positions (). One finally
gets

Zo,[0] := W,FD,F*Wj. (4.81)
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4.8.4 Matrix form of the separated ROP

It is also possible to write the measurement vector with the matrix form
of the sensing model, similarly to (ROPI), as

AyW,FD,F*W;B;

i = diag
I AgWRFD,F*W}B}

AW, WiB:

= diag FD,F* )

I ApWp W3B;

= diag(DoDwFD,F*Diy,D}),

(4.82)

where D4, Dg € CBNoXBQ® and Dy € CBL BN are block-diagonal ma-
trices whose blocks are {A,}? |, {By}f_;, and {W,}}_,, respectively.
One advantage of this formulation is that it justifies the use of the “in-
terferometry” terminology because it shows that the antenna elements,
modeled in Dy, are interfering through their two appearances and the
Fourier transforms F.

The matrix form will be discarded for the rest of the section, only
the vector form will be considered. Indeed, from a computational point
of view, the vector form will always be the fastest model. Introduc-
ing (i) the number of neighbours | used in the interpolation operators
{W;}P_, to compute each continuous visibility, and (ii) the number of
activated pixels per interferometric matrix N, Table 4.5 shows the com-
parison of the complexities of both forms. The computations of the
complexities follow the same philosophy as for Table 3.1, with the ex-
ception that each W;A; (and W;B;) now costs O(JQN,) because of
the interpolation kernel of size . For the vector form, the matrix DG
can be precomputed in O(N,BJQ?) operations. The remaining com-
putational cost of the sensing model is the application of the DFT in
O(NlogN), followed by the application of the precomputed DG ma-
trix in O(NpBN). For a quantitative comparison, we provide typical
values: the image resolution is N = 10°, there are typically Q = 50
antennas, N, = 50 projections per batch, B = 1000 batches, the number
of neighbors is | = 50, and the number of activated pixels per interfer-
ometric matrix is N; = 1000. Plugging these values into Table 4.5 gives
~ 10!° operations for the matrix form versus ~ 10® operations for the
vector form.
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Table 4.5 Complexities of the vector and matrix forms of the separated ROPs ap-
proach. The x denotes a precomputed scheme.

Name Model Complexity O Value

matrix | diag(DaDwFD,F*Dj,D3) | BN,NlogN + JOBN, 1010

vector DGFf NpQ*B+JQ*B+ NlogN | 108
“NpBN;, 4+ Nlog N 108

The diag operation performed in (4.82) indicates that projection
values—computed for the matrix form-are discarded. Actually, the sep-
arated ROPs approach is a special case of another approach—named de-
pendent ROPs—that preserves the off-diagonal terms in (4.82). With this
approach, only /N, projections would yield N, measurements per
batch. However, these measurements would now be generated from
only 2,/N, projections, making them statistically dependent on each
other. This dependence may imply the need to compute slightly more
projections to get the same amount of information about the image of
interest . Furthermore, the dependent ROPs approach can only be
modeled in a matrix form. From our conclusions made with Table 4.5,
we decided to discard the dependent ROPs approach.

4.8.5 Proof of Prop. 4.2

The proof of Prop. 4.2 will follow the same reasoning as the proof of
Prop. 3.3—a RIP, /,, for SROP measurements—given in Sec. 3.7.2, ex-
cept that the concentration of SROP measurements around the matrix
they are projecting, namely Lem. 3.4, is now replaced by a tighter con-
centration for asymmetric ROPs given in [CCG15, Prop. 1].

Even if the asymmetric ROP scheme considered here is unbiased,
the multiplicity Q of the DC component imposed us to assume a
RIP, /4, on the nonzero only visibility sampling in Assumption 4.5. The
DC component of the image—contained in the diagonal of the interfer-
ometric matrix—is removed after its estimation.

First, let us highlight that the batched ROPs model can be formu-
lated as ROPs of a total interferometric matrix, placing the interferometric
matrices of each batch block-wisely along its diagonal. Indeed, defin-
ing &* := [a],...,&}] and

Io,
T.— , (4.83)
Zn

B
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(4.30) can be rewritten as y := A(Z) = (yp) 2y with 7, = oI,

Two key observations can be made about Z. First Z € HOB as T 0, €
HC Vb € [B]. Second,

IZ1E = E I1Zo, I = Z IGFell; = ||GFe|; = | ®c]3.
b=

The same holds for the hollowed interferometric matrix:
IZnll3 = |GoFe|2 = [| o3, (4.84)

with G (resp. ®() removing the DC component from G (resp. ®), and
yc = A (Ih)

Remark 4.8. With these two observations, the proof given in Sec. 3.7.2
can be entirely reused, providing a RIPy, /¢, for SROP measurements
of zeromean images. The only change compared to the RIP given in
Prop. 3.3 is in the sample complexity for the visibilities: Q(Q — 1)B >
4K plog(N, K, ¢).

Next, [CCG15, Prop. 1] is reminded here.

Lemma 4.2 ([CCG15] Concentration of ROP in the /1-norm). Sup-
posing Assumption 3.6 holds, given a matrix J € HOP, there exists
universal constants cq,cp,c3 > 0 such that with probability exceeding
1 —exp(—c3Np),

| Tlle < w [1A(T ) < 2| T - (4.85)

As a simple corollary to the previous lemma, we can now establish
the concentration of @R®go € ]Rﬁ\r/I in the ¢;-norm for an arbitrary K-
sparse vector o € Y.
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Corollary 4.2 (Concentration of R® in the ¢1-norm). In the con-
text of Lemma 4.2, suppose that assumptions [3.1,3.2,4.3,3.4,4.5,3.6]
are respected, with 4.5 set to sparsity K > 0 and distortion . Given
o € X, and the operator R® defined in (4.30) from the N, ROP
measurements and the |Vo| = Q(Q — 1) B non-zero visibilities with

Q(Q—1)B > 4Kplog(N, K, 9),

we have, with a failure probability smaller than exp(—csNp ), for some
c5 >0,
cillellz < 5 IR®oe |1 < 2|2

Proof. Given o € Lk and J, the hollow version of J = WFD,F*W* ¢
HOB, let us assume that (4.85) holds on J1,, an event with probabil-
ity of failure smaller than exp(—c3N,) with c3 > 0. We first note that
| Tnllr = |GoFe||2 from (4.84). Second,

(1-9)lel3 < il GoFell3 < (1+6)] o3 (4.86)
since from Assumption 4.5 the matrix ® := VN GoF respects the

RIP, /¢, (Zk,0) as soon as | Vo| = Q(Q —1)B > 4K plog(N, K, 9). There-
fore, since § = R®yo = @ A(J ), using (4.85) gives

v Vo
NLPHR(DOU'Hl > @] T = aa®@||GoFoll2 = @civV1 — 5\/|N| llo]]2-

Similarly, we get

<V Vo
NLPHR(I)QO'ngCz(D 1+0 \/N HU’Hz,

. . VIV VIV
concluding the proof with ¢} := @wc1v/1 -9 \/‘NU‘ and ¢} := /1 + 5D\/|N°|.

We are now ready to prove Prop. 4.2. We will follow the standard
proof strategy developed in [Bar+08]. By homogeneity of the RIP,,, 4
we restrict the proof to unit vectors o of X, i.e., 0 € ZI*<0 =Xk, N Sé\] .

Givenaradius 0 < A < 1,let G, C Z};O be a A covering of Z*O, ie.,
forall ¢ € Xy , there exists a o’ € G), with supp ¢’ = supp o, such that
|loc — ¢’|| < A. Such a covering exists and its cardinality is smaller than
(R)(1+ 3% < (3K [Bar+08].
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Invoking Cor. 4.2, we can apply the union bound to all points of the
covering so that

Vo' e Gx, Cl SN, ||R(I)00'/||1 (4.87)

holds with failure probability smaller than

3eN

3eN
(Zr)

Koexp(—c3Np) < exp(Kgln(KA)

C3Np).

Therefore, there exists a constant C > 0 such that, if N, > CKQ ln(33N ),
then (4.87) holds with probability exceeding 1 — exp(—cN,), for some
c>0.

Let us assume that this event holds. Then, for any o € X,

FIR@r] < IR0 s + R0l — )

o — U
Ho, /H )||1H0—_0J||2

. + Nip HR(I)()THlA,

<6+ 5 RO (7

o—o’
le=a"]"
Ko-sparse since ¢ and ¢’ share the same support. Therefore, apply-
ing recursively the same argument on the last term above, and us-
mg the fact that HRd)owH1 is bounded for any unit vector w, we get

HRq)OTHV\ <YM 13)\‘:2

Consequently, since we also have

with the unit vector r = However, this vector r is itself

~; 1R®oc|li > 5 [R®oe’ |1 — 5 [ R®o (0 — o) |

> %
> c1 — ;| R®or|12,

we conclude that

—2A

1
7}\ 1< Ny HR®oo |1 < ——0,

1-A

Picking A = 1/4 finally shows that, under the conditions described

above, R® respects the RIPy, ,/, (Xk,, mk,, Mk,) with mg, > 23&, and

MKO <

402
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Diffraction Through
Inhomogeneous Media

SERVING as an introduction to the diffraction tomography context cov-
ered in Chap. 6, this chapter reviews the various ways to model the
diffraction of light through an inhomogeneous medium, i.e., a 3-D vol-
ume with a spatially-varying refractive index. Directly boiling down
from the stationary Helmholtz equation, the Lippmann-Schwinger model
is imposed as the chosen discrete model. Long story short, the model
writes

u=1u+ GDfu, (5.1)

where u; is the illuminating light field, G is an operator modeling the
physics of light scattering, f (placed along the diagonal of D) informs
on the spatially-varying refractive index in the medium, and u is the
diffracted field we aim to compute.

The few approximations behind this equation, the numerical chal-
lenges resulting from the discretization of a continuous model, and the
optimization algorithms in charge of solving for u, are progressively
described with an emphasis on the options discarded on the way. The
main achievements of this chapter are to (i) settle an accurate and ef-
ficient model for diffraction used later in Chap. 6, and (ii) gather (and
possibly federate) different approximation schemes usually scattered
in the literature under different names and approaches. This will push
the current limitations in 3-D diffraction tomographic imaging.

The codes developed in the context of this chapter can be found at
https:/ /github.com/olivierleblanc/ colsi.
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5 | Diffraction Through Inhomogeneous Media

5.1 Introduction
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Fig. 5.1 Opverview of the storyline of this chapter. Starting from the scalar Helmholtz
equation, a square linear system is obtained from the discrete Lippmann-Schwinger
equation. This linear system, with the forward operator L := I —GD 7 encapsulating
the scattering potential f, is solved by the fixed-step Gradient Descent method.

The goal of this chapter is to understand Fig. 5.1.

5.1.1 Motivation

Accurately modeling light interaction is at the heart of the computa-
tional imaging field. Because constructing efficient discrete models that
accurately represent the physics of data acquisition is a challenging
task, there is usually a lag between the community of physicists who
develop these methods and the community of applied mathematicians
who rarely develop them but use them to solve inverse problems. Most
CI papers only briefly recall what discrete model they start from, hid-
ing the imperfections under the hood.

The basic! propagation of light through an inhomogeneous medium
may read as an easy problem solved long ago. However, it is still chal-
lenging nowadays because of the influence of the whole volume in its

1ie., without electric charge, current density, nonlinear optical effects or fluores-

cence, for instance.
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globality on the diffraction effects. There was a need to restart from the
basics of electromagnetism theory—the Maxwell’s equations—and un-
derstand exactly what is the origin of the latest discrete model used for
diffraction tomographic imaging (covered in Chap. 6).

5.1.2 Related Work

A couple of the works related to the challenges tackled in this chapter
are gathered in this introductory section.

Lippmann-Schwinger for Diffraction Theory

Historically, the Lippmann-Schwinger (LS) equation that accurately
models the diffraction of electromagnetic waves, has been approxi-
mated for the sake of numerical implementation in recovery proce-
dures. In its continuous formulation, LS finds natural approxima-
tions by the Born and Rytov series [CS98; Bor+99] valid under weak-
scattering conditions, i.e., for small variations of the RI in the imaged
semi-transparent volume. In the context of diffraction tomography, the
First-Born (FB) approximation gives a linear model that can be con-
veniently solved as an inverse problem. It is theoretically supported
the Fourier diffraction theorem [Kir+21; Fau+21; KS01], characterizing the
Fourier covering attained by the tomographic conditions. Furthermore,
its computational complexity is limited by Fourier transforms and the
4-D transfer function is easy to calibrate in an experimental setup
[Lin+18]. For strongly scattering samples multiple-scattering methods
such as the Beam Propagation Method (BPM) [Kam+16b; Pha+18] and
Split-Step Non Paraxial (SSNP) [SA04; ZWT22] method have demon-
strated higher fidelity. Still, they compute the diffracted field slice
by slice by computing the illumination of each slice as the diffraction
through the previous slice. This means that no reflection is taken into
account for the light path.

Recently, [Pha+20] demonstrated an efficient numerical implemen-
tation of LS, dealing with the singularity of the Green kernel associ-
ated with the Helmholtz operator. This paved the way for reliable
computation of the light diffracted in any direction by strongly scat-
tering samples. The discrete LS model is also known in the literature as
the discrete-dipole approximation [Cha22; DF94]. Solving the discrete LS
model with an iterative gradient method [Liu+18] is equivalent to the
recursive Born approach [Kam+16a].
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Optimization Aspects

Solving the discrete LS equation requires inverting a square linear sys-
tem of the form Lu = u'. The Neumann series [GOW20], aiming to it-
eratively approach the inverse operator L™}, can be stabilized with the
adjoint operator L* and an appropriate stepsize ensuring stability. The
stabilized Neumann series is equivalent to the Gradient Descent method
with fixed stepsize, and also shares commonalities with the Picard it-
eration [BD17]. Once the emphasis is made on first-order optimization
methods [Bec17] to solve the linear system, many variants can be con-
sidered, ranging from Adaptive Gradient Descent methods [MM?20], to
Neumann networks* [ GOW20]. Retrospectively, the Recursive Born ap-
proach [Kam+16a] can be seen as the iterations of an optimization al-
gorithm instead of a Neumann series.

The solution of the discrete LS equation requires first-order opti-
mization tools. This means that the convergence rate, the condition
number, and all other tools to assess the convergence and stability
of the optimization algorithms can be borrowed from this literature
[Nes18; Becl7]. Finally, preconditioning techniques for the forward op-
erator of LS have been proposed in [Yin15; CMS23].

5.1.3 Chapter Contributions

Extensive Review of the Lippmann-Schwinger Model: This chap-
ter provides a comprehensive review of the Lippmann-Schwinger (LS)
model for electromagnetic wave diffraction. It covers the historical de-
velopment and theoretical foundation of the model, detailing its sig-
nificance in understanding wave interactions with a spatially-varying
refractive index 3-D distribution. The chapter also elaborates on the
discretization techniques used to convert the continuous LS model into
a solvable form. Various numerical methods for solving the discretized
LS model are explored, highlighting their strengths and limitations.

Contrast-dependent convergence rate: An in-depth analysis of the
convergence rate for solving the discretized Lippmann-Schwinger equa-
tion is presented. It is demonstrated that the convergence rate decreases
with increasing contrast in the medium. This contrast-rate dependence
is critical in explaining the challenges and failures in reconstructing
high-contrast media. Theoretical insights and numerical evidence are

2A Neumann network is a particular case of a Plug-and-Play method [VBW13]
where the regularization term is differentiable.
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provided to elucidate the mechanisms behind this phenomenon, offer-
ing a better understanding of the limitations of current computational
methods.

Development of a Python Toolbox: Itis hard to value the importance
of code sharing and development into a written thesis. Still, the nu-
merical analyses accompanying this chapter have been obtained with a
newly developed Python toolbox® designed to facilitate the study and
application of electromagnetic wave diffraction models. Programmed
in an object-oriented manner, this toolbox integrates various discretiza-
tion models and optimization algorithms mentioned in this chapter,
providing a user-friendly interface for researchers and practitioners.
The provided code has been implemented for Pytorch [Pas+19], mak-
ing it GPU-friendly, i.e., highly parallelizable. It also contains material
covered in Chap. 6 such as deep denoisers and implicit neural representa-
tion architectures.

5.1.4 Notations Specific to This Chapter

This chapter introduces mathematical objects related to differential
equations that were absent in Chap. 3 and Chap. 4, such as partial
derivatives, cross products, gradient, curl, and divergence. Notations
related to 3-D objects are also defined. Some of the notations specific to
this part are briefly introduced.

The light wavefield U(x,y, z) propagating in the inhomogeneous
medium of interest is composed of an incident part U;, whose associated
variables are denoted by an index i, and a scattered part Us, accompa-
nied by an index s.

The (x,y,z) dependence of a quantity U is sometimes replaced by
r := (x,y,2) or by (x,z) with x := (x,y) to shorten the notation. The
partial derivative of U with respect to x is denoted by d,U. The first
and second derivatives of the current density J(r,t) and the electric
field E(r, t) with respect to time t are written J and E, respectively. The
“Nabla” operator is only considered in Cartesian coordinates. In 3-D
it writes V := (9dy,9y,0;). The cross product is written x, so for a 3-D
field U = (U,, Uy, U), Curl naturally writes V x U. The divergence is
noted as V - U.

3 Available at https:/ /github.com/olivierleblanc/colsi.
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The scattering potential f(r) is considered enclosed in a box (), and
its discretization f is defined on a regular grid Gy, n,n.) C Q with
Ny, Ny, N; voxels along the axes.

Regarding the optimization part in Sec. 5.4, the optimal (in terms of
convergence rate) choice of some parameter « is written as a*.
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5.2 Lippmann-Schwinger and First-Born

This section aims to trace the origin of the Lippmann-Schwinger (LS)
equation in order to understand what can and cannot be modeled with
it. The proposed derivations are inspired by [Bor+99, Chap. 13].

Starting from Maxwell’s equations, the Helmholtz equation is first de-
rived in Sec. 5.2.1, with all its associated simplifications. Then, in
Sec. 5.2.2, the Helmholtz equation is rewritten to emphasize the diffrac-
tion of an electromagnetic wave by a diffractive object, converging to
the Lippmann-Schwinger equation.

Next, the Born and Rytov approximations of LS are presented with
their respective levels of approximation. The Beam and Wave Propaga-
tion Method, as well as the Split-Step Non Paraxial method are briefly
explained. Beyond the equations, an intuitive overview of the light in-
teraction modeled by these methods is given in Fig. 5.2.

Finally, the Fourier diffraction theorem is derived under the First-Born
approximation, bringing out the missing cone problem. Everything pre-
sented in this section is well-understood by the scientific community;, it
will though be useful to support some arguments given in the analyses
of Chap. 6.

Useful ldentities

We provide three identities used for the derivations in Sec. 5.2.1 and
in Sec. 5.2.3. We consider the scalar fields u, u, 8 € R where 0(r)

depends on the 3-D Cartesian coordinates r = (x,y,z) and the vector
field v € R3.

Identity 5.1 (Product rule for the curl). V x (uv) = u(V x v) +
Vu xv

Identity 5.2 (Vector triple product). V x (V xu) = V(V -u) —
V2u

Identity 5.3. uV (%) = %Vy = —Vlog(u)

Identity 54. V%) = V. [VO(r)e!] = N[V20(r) +
VO (r)13].
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5.2.1 From Maxwell to Helmholtz

This section departs from the fundamental equations of electromag-
netism theory—the Maxwell’s equations* [Jac98] and derive the scalar
form of the Helmholtz equation, highlighting the assumptions made
along the way. Each new term is highlighted in green on its first ap-
pearance.

The local form of Maxwell’s equations are recalled here below.

Maxwell’s equations

V-D = p (Coulomb)
V:-B = 0 (Gauss)
VXE = —0B (Ampere)
VxH = oD+] (Faraday)

where D, B, E, H, ], and p are respectively the displacement field, mag-
netic field, electric field, magnetic excitation, current density, and dielectric
charge in the medium. The space and time (resp. r and t) dependencies
of the involved quantities will be mostly made implicit in this section
to simplify the notations.

Making slight modifications of (Ampere) and (Faraday) (high-
lighted in green)—without loss of generality—yields:

V-D = p

V-B = 0
Vx(IVxE) = -Vx(laB) (5.2)
0(VxH) = (D) +] (53)

Where y is the magnetic permeability. Let us make two Assumptions 5.1-
5.2.

“1t is hard to cite a single work because the Maxwell’s equations have been for-
mulated many times over time by several contributors. We therefore refer to them
throughout this book [Jac98] providing detailed discussions.
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Assumption 5.1 (Time-invariant linear medium). The medium has
a linear relationship between (i) the displacement and electric fields D =
€E where € is the dielectric permittivity, (ii) the magnetic field and
magnetic excitation B = puH. This implies V. x B = u (V x H). The
magnetic permeability y and dielectric permittivity € are also assumed
to be time-invariant, i.e.,

u,e Ll t, (5.4)

hence varying only in space u(r) and €(r). “1L" denotes the indepen-
dence.

Assumption 5.2 (B € C?(R)). The magnetic field B is C2-smooth
(i.e., B has continuous second-order partial derivatives). From the
Schwarz’s theorem, it implies that the time derivative o; and curl X
commute as

Injecting Assumption 5.1 in both (5.2) and (5.3), and Assumption 5.2
in (5.3) gives

V-D = p

V.-B = 0
V x (%v X E) LV (@QH) = 0 (5.6)
V x (0;H) = €d7E+0;] (5.7)

By denoting E := 9?E, J := 9;J, and combining (5.6) and (5.7), a
single equation with only the electric field and current density can be
obtained as

Vx(%VxE)—i—eE—i—]:O. (5.8)

The product rule for the curl 1d. 5.1 is used to transform (5.8) as
%(VxVxE)—FV(%) x(VXE)+eE+]=0,
then the vector triple product 1d. 5.2 modifies the first term as
%(V(VE)—VZE)—#V(%)><(V><E)+6E+]:0 (5.9)
Multiplying each term in (5.9) by (—p) and applying Id. 5.3 yields
~V(V-E)+ V?E+ Vlog(y) x (VX E) —ueE —uj =0 (5.10)
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A parenthesis is made in order to modify the first term in (5.10).
From (Coulomb) and Assumption 5.1, we first get

V-D=V-(eE)=€eV-E+E-Ve=p. (5.11)

Then, (5.11) can be used to modify the first term of (5.10) as

V(V-E)zV(p 1E-Ve>:V(g)—V(E-V(log(e))) (5.12)

€ €

Injecting (5.12) into (5.10) and rearranging the terms gives

V2E — ueE+ Vlog(u) x (V x E) =V (8> +V (E-V (log(e))) —uj =0
¢ (5.13)
Let us consider a medium without time-varying current density
with Assumption 5.3.

Assumption 5.3. [n (Faraday), one assumes a medium devoid of cur-
rent density variation in time (J = 0).

The remaining terms are

V2E — pek + Viog(p) x (V x E) — V (g) +V (E-V (log(e))) = 0
(5.14)
Eq. (6.14) is starting to look like the target Helmholtz equation: it is
a single equation involving only the electric field E, the electric charge
p, and the medium properties u and €. The next assumption consists
in imposing a single light frequency f—and consequently a single pul-
sation w—into the model in order to avoid too much disorder. It also
allows to ignore the dependence of the medium properties on the fre-
quency of the light. From this, let us propose an ansatz® making a sep-
aration of space r and time t variables for the electric field, and further
assuming that the time-dependence only takes the form of a complex
exponential e~1%f, This is formalized in Assumption 5.4.

Assumption 5.4 (Ansatz for unique lightwave frequency).
E(r,t) = E(r)e ! = E(r,t) = —w?E(r,t)

5 A German term frequently used in mathematics and physics to refer to an educated
guess about the form of a solution to a problem.
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Assumption 5.4 can be exploited to rewrite (5.14) as

V2E + w’ueE+ Vlog(u) x (V x E) =V (g) +V (E-V (log(e))) =0

(5.15)

Assumption 5.4 somehow allows us to hide the time-dependence

of the electric field. The time-dependent term e~ in (5.15) can be

factorized and we are left with a stationary equation, only varying in
space.

The speed of light c only depends on the magnetic permeability pg

. . PR o 1 .
and dielectric permittivity €p of vacuum as ¢ := e Decomposing
each into its value in vacuum “times” relative value as y = pop, and

€ 1= €p€r, one has w?eu = wlegpoerply = (%)Zeryr = k%e;py with the
wavenumber in vacuum k := w/c. Finally, introducing the refractive
index n := ,/€r}iy, the second term in (5.15) can be rewritten as

V2E + K*nE + Vlog(y) x (V x E) — V (g) +V (E-V (log(e))) = 0

(5.16)

Three last assumptions are used to simplify (5.16) down to the
Helmholtz equation.

Assumption 5.5 (No electric charge). There is no electric charge in
the medium: p = 0.

Assumption 5.6 (Non magnetic). The medium is non-magnetic ev-
erywhere: = po 1L v, yr = 1.

Assumption 5.7 (Slow-variation of e(r)). The dieletric permittivity
e(r) varies so slowly with respect to the position r that it is effectively
constant over distances of the order of the wavelength A := . Equiva-
lently:

V (E-V (log(e))) < V2E. (5.17)

Considering Assumptions 5.5, 5.6 and 5.7 finally provides the vec-
torial Wave equation.
V2E + k*n*E = 0. (Wave)

The inhomogeneous Wave equation, also known as the inhomoge-
neous
Helmbholtz equation, is stationary—meaning the operators only act on the
space-dependence of E. Removing the time component of E(r,t) :=
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E'(r)e i also gives V2E'(r) + k?>n(r)*E'(r) = 0. Thanks to Assump-
tion 5.7, the three Cartesian components of E' := (E., E;, E) are decou-
pled. This means any component U (either EY, E,, or E7) of E’ satisfies

the Helmholtz equation defined as

Inhomogeneous scalar Helmholtz equation

(V2 +K*n(r)*1)U(r) = 0. (Helmholtz)

We can find several variants of the Helmholtz equation, where we
can recast

2
Kn(r)? = k(r)? = K3, <”(r)) (5.18)
Nm
with k(r) := km% and ky := knm, where ky, (resp. #npy) is the

wavenumber (resp. refractive index) in some presupposed background
medium m. Throughout the derivations made in this section, it has
been shown that the Helmholtz equation is only valid under Assump-
tions 5.1-5.7.

5.2.2  From Helmholtz to Lippmann-Schwinger

The Lippmann-Schwinger equation (LS) describes the electric wavefield
issued from the diffraction of an incident field by a scattering potential.
Re-starting from the Helmholtz equation, LS is derived in this section.
The following derivations are inspired by [MSG16; SPU17; Tai9%4].

The incident wavefield is defined as the solution of (Helmholtz) when
there is no variation of the refractive index within the background
medium, i.e.,

(V2 + K2 DUi(r) = 0. (5.19)
Eq. (5.19) is also named the homogeneous solution of (Helmholtz). In
analogy to the terminology used in the quantum theory of potential
scattering, we can define the scattering potential (with respect to the
background medium m) as

Definition 5.2.1 (Scattering potential).

f(r) =K, K”(T)>2 — 1] : (5.20)

Nm

The scattering potential is dimensional; its units are m~2. The
adimensional contrast value, which will be useful in Sec. 5.4.2 and in
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Chap. 6, is defined in Def. 5.2.2 as the maximum relative variation of
the refractive index (with respect to the background medium m).

Definition 5.2.2 (Contrast).

cx:nmebN::%%KK”“DZ—q. (5.21)

reR3 k%n Nm

Eq. (5.20) allows to rewrite (Helmholtz) as
(V2 + Kk DU(r) = —f(r)U(r).

Let us decompose U(r) into its homogeneous and particular parts, or
equivalently as the sum of the incident field U;(r) and the scattered field
Us(r) as

U(r) = Ui(r) + Us(r). (5.22)

U;(r) and Us(r) respectively satisfy
(V2+ KA 1)Ui(r) =0 (5.23)
(V2 + k5, 1) Us(r) = —f(r)U(r) (5.24)

From here we convert (5.23) into an integral equation. Let

il 5.25
eap (5.25)

be the Green function associated with the Helmholtz operator V2 + k2, I
[Tai%4], i.e., a solution of

(V2+Kk,1)G(r—7') = —6(r—71) (5.26)

We can integrate (5.26) into a volume () s.t. supp f C () to get an ex-
pression similar to (5.24) as

v/f')(vf + R DG(r =) f(X)U()dr = /Q — (e — ) F(F) U )Y
= —f()u(r),
and by identification with (5.24) conclude that
Us(r) = /Q FEUE)G(r —)dr (5.27)

Combining (5.22) and (5.27), we finally obtain the Lippmann-Schwinger
equation.
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Lippmann-Schwinger equation

U(r) = Ui(r) + /Q FEUFE)G(r —7)dr (LS)

Eq. (LS) describes the total field U(r) as a function of the incident
field U;(r) and the scattering potential f(r) defined in (5.21). This is an
implicit equation, involving the solution U on both sides of the equal
sign. Furthermore, the interaction between the total field U and the
scattering potential f is convolutive. The knowledge of f in the entire
volume () is necessary. Note that the value of kp, in the definition of the
scattering potential f can be set to any arbitrary value.

5.2.3 The First-Born Approximation

As the implicit equation (LS) is very hard to solve, many simplifica-
tions of the Lippmann-Schwinger equation have been studied and used
in the last century [Bor+99]. In this section, we explain the Born ap-
proximation, used in the numerical experiments of this thesis. We also
mention other approximation techniques and report their details in Ap-
pendix 5.6.

The most straightforward simplification of (LS) consists in assum-
ing that the scattered field is negligible compared to the incident field,
ie., |Us(r)| < |Ui(r)|, Vr € Q. This assumption allows replacing U by
U; into the righ-hand term of (LS) as

Ui (r) = Ui(r) + /Qf(r’)ui(r’)G(r —r')dv’ (First-Born)

which is known as the First-Born (FB) approximation [CS98]. First-Born
is easy to compute because it is linear with respect to the scattering po-
tential f(r). The (n + 1)-order Born approximation consists in substi-
tuting the n-order approximation for U as

Uy (r) = Ui(r) + /Q F( ) Un(#)G(r — #)dr'. (5.28)

Unrolling (5.28) yields a series known as the Liouville-Neumann series
[Bor+99, Chap. 13]. The n-order Born approximation naturally im-
plies computing 7 integrals, so computing more than the second-order
Born approximation in continuous form has rarely been done in prac-
tice. The n-order Born approximation is expected to converge to (LS)
as n — oo under certain conditions, but these conditions are difficult to
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establish. The stability conditions are studied in Sec. 5.4 for the discrete
version of (LS), emphasizing that the n-th iterate of the gradient descent
method is a kind of stabilized n-order approximation.

There exists many other approximations to the LS model that im-
prove over the First-Born approximation. Namely, the Rytov approxima-
tion, Beam Propagation Method (BPM), Wave Propagation Method (WPM),
and Split-Step Non Paraxial (SSNP) method are detaild in Appendix 5.6.
The levels of approximation of these different methods are divided in
three classes in Fig. 5.2. The First-Born and Rytov approximations con-
sider only the interaction of the object with the incident illumination.
The BPM, WPM, and SSNP are multi-slice models that alternate be-
tween the diffraction through a phase mask related to each slice of the
RI object content, and a free-propagation in the background medium
until the next slice. The LS model is the only one without approxima-
tion, because it models the infinite order of interactions between all the
scattering elements of the volume.

e Phase screens
Z A
e ———— —Y— Y
e S, L] s ] )
Ui(z,0) M Uiz, Az) /W\,(‘(T_>“A‘) AN> oo Uiz, ) First-Born, Rytov
e A e A '4
: [(w.A:): IV::EAQA:\:
Ui(=,0) BN KR ANE ) o
—=| W M| AW M| AW eee BPM, WPM, SSNP
K S A NI
*§\ U(a:AA‘%*§ L(m.?f%)*§
(@0 ] ] 7
Uiz, 0% 7<-§WQ_> %7% <-§W}_) 7*}W}~) eee U(z.z)A\\Ns | Lippmann-Schwinger
sEx Fow o o §
z=0 z=Az z =2Az
i . § - Lo % Multiple-scattering
—> Incident planewave N>  Forward scattering *W_) with refloctions

" bl
Fig. 5.2 Illustration of the three families of diffraction methods. (top) The total field
computed by the First-Born and Rytov approximations is the sum of the incident field
and its separated interaction with each slice of the scattering potential. The deforma-
tion of the incident field through each slice to illuminate the next slice is neglected.
(middle) For BPM, WPM, and SSNP, the total field at depth z is given as the composi-
tion of the effect of each scattering slice on the incident lightwave. The models neglect
the reflections. (bottom) In the Lippmann-Schwinger model, the total field at position
r depends on the entire RI volume through a convolution, where each voxel plays the
role of a new light source.
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Fig. 5.3 Diffraction of an incident planewave through a slit with (left) the First-Born
approximation, and (right) the LS model.

In order to provide a realistic illustration, Fig. 5.3 depicts the diffrac-
tion of an incident planewave of wavelength A = 515nm in vacuum
propagating along the z-axis in water (n, = 1.333). The centered slit
mask, of width A and contrast C = 2 (corresponding to a RI n = 2.75)
has been placed at depth z = 2A. In Fig. 5.3, one observes that LS ade-
quately models the major reflection imposed by the mask while FB only
takes into account the interaction of the incident planewave with every
voxel of the scattering potential, and considers that the right-hand side
of the mask behaves as a new diffracting source.
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Remark 5.1. There exists a multitude of finite difference methods
[Str04] that directly solve the Helmholtz equation after a discretization
of the volume. For instance, the central difference method (particular-
ized to 1-D) writes

Uip1 —2u;+ Ui
Ax?

+ kpui = fi,

for an integer i indexing some position along the x-axis, and a spatial
resolution Ax. The drawbacks of finite difference methods compared to
the methods presented in this section are threefold: (i) Ensuring sta-
bility requires careful selection of grid spacing, especially for explicit
methods. (ii) A large number of grid points are often required to accu-
rately capture wave phenomena, leading to high memory and processing
requirements. (iii) Implementing appropriate absorbing boundary con-
ditions to simulate open domains can be complex and imperfect, leading
to reflections that affect the solution.

This section aimed to convince the reader of the importance to work
with an efficient version of the LS equation, free of the approximations
considered in the other presented models. Sec. 5.3 will deal with the
numerical challenges associated to its discretization.

5.2.4 Fourier Diffraction Theorem

The Fourier diffraction theorem [Kir+21; Fau+21; KS01] is fundamental to
diffraction tomography. Under the First-Born approximation, it relates
the Fourier transform of the measured forward scattered data to the
Fourier transform of the object.
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Theorem 5.1 (Fourier diffraction theorem). Let f(r) € R be the
scattering potential distribution at position r € R3, f(w,w,) € C be
its 3-D Fourier transform with w € R?, w, € R, and let U5 (r; k;) €
C be the scattered component of the First-Born approximation under
a planewave illumination U (r; ki) = ek T with wavevector ki €
R3. The transversal 2-D Fourier transform of the scattered component
at depth z, denoted J, is related to the 3-D Fourier transform of the
scattering potential as

i in(w)z R
Fa{U 230 o] = 5= S oo+ ) = n(e),
(5.29)

n(w) == \/k — [lwll3. (5.30)

The proof is given in Appendix 5.6.2. The Fourier diffraction theorem
informs on which partial Fourier content of the scattering potential f
can be accessed by the scattered field U5. Let us consider a single view
with incident direction k; := ke, i.e., with wi = 0 = y(wi) = k.
For this single view, and a given observation depth z, (5.29) shows that
by varying w, the Fourier transform f can be accessed only at coor-

where

dinates (w, km — /k% — ||wl|3). This defines a hemispherical surface

centered on (0, ky) with radius kn and depicted in Fig. 5.29(a). The
Fourier diffraction theorem is a generalization of the Fourier slice the-
orem [MSG16] only valid in classical tomography, i.e., when the illu-
mination wavelength is negligible compared to the dimension of the
scattering potential.

€, €,
€y
f
e, i
anee
(a) (b) ()
Fig. 5.4 (a) Accessible points (w,km — 1/k2, — [|w||3) of f in transmission imaging

and for an incident field U;(r) = e~ tkmz_ (b) Complete revolution of the points in (a)

around the ey-axis. (c) Projection of (b) in the ey — e, plane. Adapted from [Kir+21].
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Fig. 5.4(a) shows that, under the First-Born approximation, the
Fourier content accessed by the front-scattered field U7 is very limited.
For image recovery purposes, multiple views are necessary. Fig. 5.4(b-
c) show the Fourier coverage obtained from a complete revolution of
the object (or equivalently the incident field, see Claim 5.1) around the
ey-axis. Even in this situation, the frequency content along the e, di-
rection remains poor. The sphere of radius v/2ky can be accessed by
further considering a complete revolution around the e,-axis.

Claim 5.1. Rotating the incident U; on a fixed object is equivalent to
considering a fixed incident field on a rotated object. To prove this, let
us consider any arbitrary 3-D rotation matrix R, and insert the rotated
incident field U;(Rr) into (LS). It writes

U(r;R) = Us(Rr) + /Q FEUE)G(r — #)dr.
Applying the change of variable ¥ := Rr yields
URTFR) = Ui(7) + /Q F(E U )G(RTF - #)dr’
— U + /Q FRTF)URTF)G(RF— R'7)A(RF)
— U + /Q FRTAURTF)GF-F)dF,  (531)

where the last two terms were changed by knowing that R preserves
the distances. Eq. (5.31) shows the equivalence between incident field
rotation and object rotation in the opposite sense.

In general, the imaging conditions restrict the set of possible angles
from which to illuminate the object. The lack of Fourier information
imposed by this restricted view often induces artifacts in the 3-D image
estimated by an inverse problem solving. This phenomenon is well-
known as the missing cone problem [Lim+15] depicted later in Fig. 6.5.
Part of the analysis presented in Chap. 6 will be oriented towards pre-
senting use-cases where the nonlinearity of the Lippmann-Schwinger
model (LS) mitigates this missing cone problem.

5.2.5 Passive lllumination Sources

The main difference between the LS model and its First-Born approxi-
mation is that LS can model multiple reflections. This fact can be lever-
aged to our advantage by inserting known strongly scattering tiny ob-
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jects into the volume () in the aim to induce strong reflections that
modify the effective illumination. Indeed, let us consider a modified
RI object

Q

f(r):=f(r)+ Z cq O(r— pq), (5.32)
q=1

where f is the RI object that we aim to image by diffraction tomography,

and Zqul cqd(r — pq) is a sum of Q ponctual sources with respective

scattering potential ¢; and position p, € R3. Injecting (5.32) into (LS)

gives

Q
U(r) = Ui(r) + Y e U(p,)G(r — p,) + /Qf(r/)u(r/)(;(r e,
q=1

(5.33)
By identification with (LS), it appears that (5.33) now has an equivalent
illumination

Q
Ui(r) := Ui(r) + Z:lch(pq)G(r —p,). (5.34)
q=

Obviously, the equivalent incident field in (5.34) requires the total field
at the position of the passive sources U (p q) as it interacts with the object
to be imaged. But if the passive sources are sufficiently far away from
the object, the equivalent illumination can be approximated as

Q
Ui(r) = Ui(r) + ) ¢qUi(p,)G(r — p,)- (5.35)
q=1

Remark 5.2. This view in (5.34) could not be obtained with the
(First-Born) model. In that case the diffracted field would have been
written

Q
U(r) = Ui(r) + Y cgUi(p,)Glr—p,) + /Q F)U(F)G(r—v)ar,
=1

and one observes that the passive sources have no influence on the field
illuminating f in the last term, which remains U;(r).

With the definition of the Green’s function given in (5.25), if the

passive sources are sufficiently far away from f, their contribution can
be approximated as planewaves coming from their position. Eq. (5.33)
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shows that the passive sources give access to illumination angles possi-
bly unreachable in the tomographic imaging conditions. The insertion
of these strongly scattering objects mitigates the missing cone problem
[Lim+15] illustrated later in Fig. 6.5(b). This technique is standard in ul-
trasound imaging [Hua+14], seismic imaging [Wan+20], and radar [LHO7].

0 Ui(r) Ui(r)
i 11 2.0
15
N 1.0
. 0.5
/<
— 0.0
Q |4
74 —-0.5
~1.0
, 15
10 : : Walre 11NN 20
0 3 7 10 0 3 7 10
z [A] z [A]

Fig. 5.5 Field scattered by passive sources. (left) Incident field Uj(r) = etkmz (right)
Equivalent incident field U (r) resulting from the diffraction of U through two passive
sources of contrast C = 2 respectively located at (52, 3%)\, %A) and (52, %A, %A)
Both are shown in the plane x = 5A.

Fig. 5.5 illustrates the approximate equivalent incident illumination
U;(r) obtained using (5.35) by placing two passive sources on the sides
of the domain (), with contrast value C = 2 (corresponding to a RI
n = 2.75). The incident planewave has wavelength in vacuum A =
515nm and propagates along the z-axis in water (n, = 1.333). It can
be seen in Fig. 5.5(right) that the passive sources induce new (almost)
planewave illuminations coming from their locations. This results in
an illumination with a larger illumination angle of the volume () than
in their absence, as seen in Fig. 5.5(left).
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5.3 Discrete Model

A discrete version of the Lippmann-Schwinger equation (LS) is derived
in this section, accompanied by an efficient implementation of the con-
volution with the Green kernel.

5.3.1 Spatial Sampling

Let us consider the spatial sampling operator 1113 sampling a 3-D con-
tinuous function / on a regular 3-D grid G ((i]x ﬁ\lyf;]z) = {ro,...,*n-1}
with resolutions (N, Ny, N) along the (x,y, z) axes by using a Dirac’s

bed ZnNzl o(r —ry) with r, € g&;?gyﬁ;ﬁ) One has r, := ), o L for
j

the spatial dimensions L := (Ly, Ly, L;), and 7} = (NLX'E’N%) for
Applying 1113 to U, U;, Us, f, and G and gathering the N nonzero

values into vectors respectively yields u, u;, us, f, and g all belonging
to RN,

First, let us realize that the continuous equation (LS) is valid at

any position r € R> It can thus be particularized to a position

(Lo Ly L2)
r, € Q(NX/N%NZ) C Qas

U(ry) = Ui(ra) + / FE YU )G (rn — #)dr. (5.36)
0
Second, applying 1113 to f and U in the intregral of (5.36) gives
U(ra) ~ Ui(r) + [ Taf () U()G (s — 7 )dr
Q

N
— Ui(r,) + /Q Y 5(r — ) f(F YU )Gy — )dr
n'=1

N
= Ui(ry) + ;lf(rn/)U(rnr)G(rn — 1)

where we used [, 6(r — ry)dr’ = 1. The discrete solution u :=
(U(ry))N_; can thus be computed as
U(.Tl) B |:Ui(.1’1) . G(;i(g)rl) G(E(E)TZ) gg:;::z% [f(rl)ll(rl)]
urm)] L] Goior G r e | U@
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or, equivalently

Discrete Lippmann-Schwinger

u=1u;+ GDyu (LSd)

where Dy := diag(f) € R¥*N is a diagonal matrix filled with f, and
G € CN*N the circulant matrix with (G)jx = G[/j —k/ ], ie.,

G = FDp F* = F*Dp,F (5.37)

with the 3-D Fourier operator F. The second equality in (5.37) ex-
ploits the isotropy of the Green function G. The discrete Lippmann-
Schwinger equation (LSd) is also known as the discrete-dipole approxi-
mation. [Cha22; DF94]. Eq. (LSd) also exists for the three vector com-
ponents of the electric field E combined together. In this case, a simi-
lar system involves operators of size 3N x 3N and vectors of size 3N,
where the scattering potential becomes a 3 x 3 tensor, so D s becomes a
block-diagonal matrix with blocks of size 3 x 3.

In the same fashion as for LS, the discretization of the First-Born
model writes

Discrete First-Born

u=u;+ GDfui (FBd)

5.3.2 Accurate and Efficient G

An accurate and efficient implementation of the forward model is pro-
posed here; exploiting the FFT for applying the forward operator G,
and truncating the singularity of the Green function at the origin.

The problem with computing model (LSd) for now is that it re-
quires a discretization g of the Fourier transform of the Green function
G(u) := 1/ (k% — ||w|)3). Both G(r) and G(u) have a singularity which
prevents from a direct discretization. It has been shown [Pha+20] that
the truncated Green function

Gt(r) := rect (H;LH) G(r) (5.38)

for L := v/3max,, r,cq ||r1 — r2|| can replace the exact Green function
with negligible relative error for the application of the operator G in
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(LSd). The Fourier transform of G; writes

Gi(w) = W <1 — eilkm (cos(L||w||) + ikmL sinc(L||wH)>>

when ||w|| # km and

. ) L eiLkm )
Gt((l)) =1 <2km - E Sln(Lkm))
when ||w|| = km.
Let v € CN be any arbitrary vector and v, be its p-times zero-
padded version, from (5.37) and exploiting [Pha+20, Prop. 3.2], we have

o~

Gv, = F*DpgFv, = F*(§,07,) = F*(g! ¢ 02) (5.39)

where v; is a twofold zero-padded version of v, and g} is the modified
kernel

N —i2m p T
5 L @y shke T 640
se[5-1]3

The last formulation in (5.39) allows to conserve a fixed memory
cost bounded by a twofold zero-padding of v for any choice of the zero-
padding factor p > 4. In the experiments presented later in this chapter,
and also in Chap. 6, the application of G will be implemented as in
(5.39) and with p = 4.

Eq. (LSd) provides us a discrete model to compute the total light-
field u resulting from the diffraction of an incident field u; through an
inhomogeneous RI volume f. Sec. 5.4 will discuss how to solve it.
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5.4 System Solving

The fruit of Sec. 5.3 is a discrete model (LSd) for computing the light
field u from the knowledge of an incident field u; and a RI volume
f. Here, numerical methods are investigated to solve the subsequent
linear system. The classical gradient descent method is theoretically
studied to introduce the concepts of convergence rate and condition
number. Others are numerically analyzed in the provided comparison
results. It is numerically demonstrated that the contrast of the refrac-
tive index volume directly affects the convergence rate of the system
solving. Preconditioning techniques to improve the convergence rate
are mentioned.

5.4.1 Bridging Neumann Series and Gradient Descent

The discrete Lippmann-Schwinger equation (LS) is equivalently writ-
ten as

(I —GDf)u = Uj.

By introducing A := GDy € CN*N and L :=I1—A € CNV*N it can be
recast as
Lu = u;. (5.41)

Eq. (5.41) appears to be a square linear system that needs to be solved
for u. Obviously, when there is no variation in the RI, i.e., f = 0, the
solution is simply # = u;. Compared to common inverse problems en-
countered in CI applications that are under-determined and ill-posed,
such as those in Chap. 3,4,6 the system in (5.41) is most often fully de-
termined. However, some uncertainties such as an imperfect knowl-
edge of either f, u;, or both might be modeled as additive noise. In this
case, it is good practice to solve a regularized minimization problem
by injecting a prior on the expected solution u. While it is not harder
in terms of implementation to regularize the minimization problem, it
complexifies the theoretical analysis. For the sake of simplicity in the
analysis, the non-regularized minimization problem will be considered
below.

The continuous version of (5.41)—either (Helmholtz) or (LS)—is
known to have a unique solution if the electric field satisfies the Som-
merfeld radiation condition® [CK13, Th. 9.4]. Analogously, the solution of

6The Sommerfeld radiation condition selects only waves that radiate outward from
known sources and thus vanish at infinity.
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(5.41) is unique if the inverse L™ exists. Provided that ||A| < 1, this
inverse exists and u# can be computed as

u = L 'u,. (5.42)

Indeed, as ||A|| = Omax(A) < 1, omin(I—A) > 0 = det(I-A) =
det(L) # 0. Hence, L™! exists. The inverse operator L™! can be de-
composed into a converging Neumann series [GOW20], transforming
(5.42) as

u= Z Ay (Neumann)
k=0

If ||A]| > 1, the Neumann series diverges. L™! may not exist with
the possible situation ker L := {u s.t. Lu = 0} # {0}. Yet, it is always
possible to formulate the minimization problem

i = argmin £(u) = argmin 1||Lu — u;]|3 (5.43)
u u

whose solution is not unique but a set. Indeed, if u* is a solution of
(5.43), then u* + ker L is the set of solutions. By differentiating £, the
solution of (5.43) must satisfy L*Lu = L*u;, and in the case where Lt
exists (hence (L*L)~1), one gets

u=L'u=(L"L)'L*u; = Y (I-L*L)*L*u;. (5.44)
k=0

The solution of (5.43) explicited in (5.44) is the (left) pseudo-inverse
of the linear operator L applied to u;. For the same reasons as
for the Neumann series in (Neumann), the above series converges if
|[I—-L*L|| < 1, which is not guaranteed in general. This is why (5.43)
is stabilized by adding a scaling factor « in front of (5.44). After adding
a stabilization factor @ < 2/||L||? to ensure convergence, this results in
a solution computed as

[ee]

u=) (I —«L*L)*aL*u;. (5.45)
k=0

This stabilization is formalized in Claim 5.2 which is proven in Ap-
pendix 5.6.3.
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Claim 5.2. Given any linear operator L, it is always possible to choose
a scalar value « such that the series Y o (I —aL* L)*a L*u; converges.
The convergence condition is equivalent to upper bounding the stepsize
o, with

. 2
|II—aL*L|| <1< a < T (5.46)

Remark 5.3. Eq. (5.45) is equivalent to applying the GD algorithm
to the minimization of the cost in (5.43). The matching is clearer by
recasting every iteration as
w1 = (1—aL*L)u® + oL u;
=4 — aL*(Lu(k) — ;) (GD)
=u®) —avL(@®)

which is stable only if the stepsize a < ||L2||2'

Fig. 5.6 provides a geometrical intuition of the condition on the fixed
stepsize « = % to ensure stability of the GD method for minimizing the
loss function £(u) = 1(Lu)? with L = 0.5. Particularized to this 1-D
example, the k-th iterate in (GD) can be recast as u¥) = (1 — )ku(®.
The constraint |1 — 7| < 1 for stability is immediate.

—e— a=18/L*
— a=20/L*
— a=21/L*

Fig. 5.6 Geometrical intuition of the fixed stepsize GD method applied to a 1-D exam-
ple. With slope L = 0.5 and an initialization u(?) = 5, the stepsizes & € {%f, %, 2L—21 ,

respectively converge to the global minimum, oscillate, and diverge to infinity.
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Remark 5.4. The Neumann series can also be interpreted as a Picard
iteration [BD17, Th. 2.8.1]. Indeed, the Picard operator P is simply de-
fined as computing the right term of the discrete Lippmann-Schwinger
equation (LSd) as

P(v) := u; + Av.

Applying j times P to u; corresponds to the j+ 1 first terms of the
Neumann series. For u®) = 0, one has u™V) := P(u(0)) = u;, u® :=
P(uM) = u; + Au; and, for j > 0,

j
w0t .= p(u)) = pUtD)(g) = ZAk”i'

Interestingly, the Neumann series converges to u iff u is a fixed point of
Pp.

Remark 5.5. The approximation error of (FBd) directly depends the
contrast of the RI object. Indeed, if || A|| < 1, (Neumann) gives

u=u;+ GDfui 4 ZAkui.
k=2

| IS
e

An upper bound on the error comitted by (FBd) can be obtained as

lell = ui|| < Z 1A% < Y (AN o]
k=2
Z(HGHHDfH ¥l < Z(HgHoonHoo)klluill
k=2 k=2
2
< [FAESRA[ES i,
— lIglleoll flleo

where || || is the contrast value. This result is a discrete equivalent of
the results given in [Buc+01].

5.4.2 Convergence Rate

The well-documented link between the convergence rate and the con-
ditioning of the forward operator is explained in the context of the dis-
crete Lippmann-Schwinger equation (LSd). We provide numerical evi-
dence that the conditioning of the operator L is worsened for increasing
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contrast values.

Using (GD) to solve the linear system (5.41), let us analyze the evo-
lution of the loss function value £(u®)) = 1||Lul®) — u; 3 at iteration k.
The results that will be obtained below are known results for the gra-
dient method on strongly convex functions [Nes18, Sec. 2.1-2.2], [Bec17].
Let us define governing parameters for the analysis of convergence.

Definition 5.4.1 (Parameters in optimization theory). In the con-
text of the minimization of strongly convex functions, the convergence
rate is defined as

) %)
¥—1 m— L

=—] = —— 47

¢ <7+1> <m+L>’ (47)

where v := 1, m = 0,(L)? is the strong convexity coefficient with

r being the rank of L, and L = o1(L)? := ||L||? is the Lipschitz

constant of VL. o1(L) and o,(L) are respectively the first and r-th
singular values of the operator L.

The literature shows that the distance to the optimum u* writes

1 ® — [ < FJlu® — w3, (5.48)

and the upper bound on the function value is

ckrL
2

L

L)~ L) < Sl — < e —w i (649)

The convergence rate stated here above is called linear. These known
results will be demonstrated for our particular case. By remembering
from (5.45) that u®) = Z;:& (I —aL*L)/aL*u;, and writing the SVD L :=
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ULV* with the properties V*V = I, and U*U = I,, one gets

k-1 .
Lu® = Y Uzv* (I, —aVZ?V*)(I, —aL*L)'aL*u;
j=0

= Y ux(1, —ax?)v*(1, —aL*L) 'aL*y

= Y uz(1, —az?)viaL*u
= (5.50)

I
<

k-1
LY (I, —aZ?) aZU'uy
j=0

| —
(ax?) 11, —(I, —aE?)¥)

= Uz YL, — (I, —aZ?)" U

= U1, —(I, —aZ?)"\U*u;.

Hence,
k 2
LWy =1 (uu* —1,)u; —U diag <1 - 77(?)2> Uty
1ImUu ! 2
k 2
= 1|(Uuu* - L)ul); + 1| U diag (1 - ;7(2)2> Ut
k 2 ’
= |[(uu* — In)uiHﬁ + 1| diag <1 — q(z)2> Utu; i
1 N 2 0;i\2 2% . 112
< (U =T[5 + g max )1 = (7)) [ U]
(5.51)

The stepsize factor has been defined as 7 := a||L||?>. The third line
is obtained from the second line by using the identity |[UM]|3 =
(UM, UM) = (U*UM, M) = (M,M) = ||M||3. By convention in the
SVD L = UXV*, one has |L|| = 0max = 01. By defining the optimal
value of the loss function as £* := L(u*) = %H(UU* —I,)u; i, (5.51)
can be rewritten as

2

k
L) — £t < max 1y ()| Wl 65
1

25eln

2, u(o) =0,

and identified with (5.49) by setting ¢ = max;c[,] |1 —7 (%)2
and HU*uiHE < L|ju*||3. L£* is independent of k. Considering a GD
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scheme with fixed stepsize « = 77/L, the choice of stepsize factor 7 that
optimizes the convergence rate c must satisfy

1— ;7(@)2' = min max <max1 — U(ﬁ)zzmaxﬁ(ﬂ)z - 1)

min max
nielr] 01 n ie(r] 01 ie(r] (o1
: Or\2
=minmax (1—#y(—) ,7—1
y < (o) >

which is reached when
) (5.53)

This gives an optimal stepsize

2 2
= = . 5.54
o2 +02 L+m (5:54)

*

In particular, injecting the optimal stepsize factor choice of (5.53)
into the convergence rate of (5.52) yields

£@®) — £ < Yy =1 urtu;
1—(ov/c0)? |, . 2
T4 (/o 105l (5.55)

k2 —1

k2 +1

1
-2

2

2%
3 U u; 2/

2

meaning that the convergence rate of the GD method is slower when
0, < 01. Their ratio is defined in Def. 5.4.2

Definition 5.4.2. The condition number is given as the ratio between
the two extreme singular values of L, i.e.,

k(L) := > 1. (5.56)

While the above derivations were specific to the GD method ap-
plied to the strongly convex function £, in a broader context it is still
known that decreasing «(L) speeds up the convergence of minimiza-
tion algorithms [Wik]. A branch of the optimization literature is de-
voted to the study of techniques for reducing this condition number.
This technique, called preconditioning, is discussed in Sec. 5.4.4.
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Fig. 5.7 Decay of the loss function £ over the iterations k and as a function of the
stepsize factor 7 for a toy linear system Lx = y with L € R128%128 of rank = 12. In
this experiment, the ideal choice following (5.53) was #* = 1.18. Both the AGD and
Chebyshev methods converge as fast as GD with the ideal stepsize 77*.

Let us start by confirming the convergence results and optimal step-
size derived in this section. To do so, Fig. 5.7 analyzes a toy square lin-
ear system Lx = y with a randomly generated matrix L € R!28x128
of rank * = 12. In order to obtain such L, a matrix A is first ran-
domly generated with entries Aj > N(0,1), Vj,k € [128]. Then,

its SVD provides A = UXV*. L is finally computed by keeping only
the first r coefficients of X as L := UZX,V*. In the experiment shown
in Fig. 5.7, the knowledge of L allowed to estimate the optimal step-
size factor as #7* = 1.18. In this plot, the evolution of the loss function
L(x®) — £* = 1| Lx® — y||3 is shown with the y-axis in logscale.

The solid curves have been obtained by applying the GD method
with a fixed stepsize &« = 7/|L||?>, and for a set of stepsize factors
n €S8 :=1{0.050512,1.5,1.8,1.95}. The curves nicely verify that the
optimal convergence rate with GD is obtained for 7 = 1.2 € S. Then,
the convergence of other choices for 77 depends on their distance to the
optimal value #*. For instance, the two extremes 7 = 0.05 and 17 = 1.95
exhibit the worst convergence rates.

In practice, the optimal stepsize factor #* is unknown. If the for-
ward operator L € RN*N has a rank comparable to its dimension, i.e.,
r < N, the smallest singular value o, is most likely negligible compared
to o7 hence the optimal 7* tends towards 2. However, there exist several
optimization techniques that improve upon the GD performances. In
Fig. 5.7, we tested in dashed line the Accelerated Gradient Descent (AGD)
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which is a GD algorithm with a momentum like the popular FISTA ap-
proach [BT09], and in dash-dot line the Chebyshev method [Man77]. It
is observed that, even if #* is unknown, both perform as good as the
optimal GD version.

1012 5.00

— GD
10° .
---- AGD 2.00
106 —_— .—\(1:\91_)
___________________ 1.00
103 p\\ T - O
= +
= 0.50 §
~ +
Q g
10 S
0.10 O
1076
0.05
107‘) .............................
10712
0 100 200 300 400 500

[teration k
Fig. 5.8 Convergence of GD, AGD and AdAGD for solving (LSd).

Fig. 5.8 shows the evolution of the loss function £(u*)) for the GD,
AGD [BT09], and Adaptive AGD (AdAGD) [MM20] methods for dif-
ferent contrast values C. As announced in (5.49) and demonstrated
in (5.55), there is a linear convergence rate, i.e., an exponential decrease
of the loss function £ with the iterations. For the minimization of a
strongly convex function, accelerated gradient methods cannot beat the
best convergence rate of the non-accelerated gradient method.

The convergence is slower for higher contrasts (remember Def. 5.2.2),
which seems to indicate a higher condition number x(L). Unfortu-
nately, there is no analytical solution to obtain the SVD of L =1 —-GDy
from the SVD of the circulant matrix G = F*diag(Fg)F (remember
(5.37)) with g € CN the discretization of the Green function g(r). How-
ever, for very small contrasts, L = I,, implies o, — 03 = « — 1 and
thus a faster convergence of the optimization methods. In practice, the
smallest eigenvalue 0, can be estimated with numerical methods, e.g.,
[MT20a, Sec. 6.4.]. Preconditioning techniques aimed at reducing the
condition number are discussed in Sec. 5.4.4.
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5.4.3 Estimating the Lipschitz Constant

The Lipschitz constant of the gradient of the loss function is equal to
L = |L||> = ||IL*L|] = ¢1(L*L)”. In order to estimate it, the Power
iteration method [GV13] is applied to L*L as

51 5(K)
L*L
o= = (5.57)
IL* Loy |2
with 550) ~ N(0,0%1) then normalized to have a unit norm. It is clear
from (5.57) that H’(~J§k) |l = 1. From (5.57), %gk) converges to the domi-
nant eigenvector v; associated with the first eigenvalue oy of L*L at a

k
rate . One has

[%)
(%1

L*Lvl = 0101
* * *
= v1L"Lv) = v{010;

= | Lv1|)3 = o1][v1 |5 = o1

Thus, from %’gk), the estimated dominant eigenvalue 77 can be obtained

as 01 = ||L71]|5 and the convergence rate of the estimate Lipschitz con-
stant can be estimated as

~ ~(k
51— 1| = |1 L3 — || Loy | 3]
~(k
< L@ —00)|3
~(k
<ILIPIFY = 013

k

02 =0
<P 2| 17 - ol

1

k

<L 5| 4

02
01

<A4|L|?,

where the triangle inequality has been used for the two first line jumps,
the convergence rate of the power method has been used for the fourth

line, and Hﬁgo) — 012 < 2 asboth are unitary. Equivalently, the estimate
is bounded as 3/407 < 07 < 5/407. As the chosen stepsize must satisfy
a < U% to ensure stability, the worst-case situation is when the Lipschitz
constant is underestimated, i.e., when 07 = 3/407. With this worst-case

’This can be proven by the definition of the spectral norm and an SVD of L.
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bound, the stepsize can be safely chosen as

n < (5.58)

207
Worth mentionning is the existence of the Krylov subspace method
[MT20b] that improves on the power iteration method by considering
linear combinations of the power method iterates to estimate the Lip-
schitz constant. There also exist backtracking line search methods that
adaptively estimate the Lipschitz constant while solving the minimiza-
tion problem [Nes13].

5.4.4 Preconditioning

Optimization alternatives aiming to increase the convergence rate of
solving the LSd equation by preconditioning the GD method are dis-
cussed. It is shown they all follow the same target of approximating
the inverse of the Hessian of the loss function, i.e., (L*L)~! without in-
verting operation.

With the quadratic loss function £(u) = 1||Lu — u;|)3, the third-
order derivatives are zero, hence the Taylor series expansion of the loss
function at optimum writes exactly as

L) = L)+ VL@ ) —u) + L@ — ) VL) 07— ),

(5.59)
The optimal value is defined so as to minimize the error in (5.59) in
function of u* — u®), It is obtained as

w = ul) - (Vzﬁ(u(k)))AVE(u(k))
=u® — (L' L)'L*(Lu® — ) (Newton)
= (L*L) 'L*w.

Eq. (Newton) can be seen as as an iterative method that converges in
one shot. The final result in (Newton) is obviously the pseudo-inverse
solution written in (5.44), showing that the GD is trying to approxi-
mate the solution by completely removing the inverse Hessian (L*L) !
and iterating with a fixed stepsize « instead. For any function, apply-
ing (Newton) is known as the Newton method. In general, optimiza-
tion methods that involve the hessian V2£ (X)) are called second-order
methods [NWO06].

The problem with the Newton method in this context is that it
requires the inverse (L*L)~! which is computationally expensive to
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obtain. Quasi-Newton methods try to precondition the descent direc-
tion with a preconditionner P that uses only evaluations of the gradient
Vﬁ(u(k)) (in this case, simply L and L*), BFGS [NW06] is a popular ex-
ample of such. In the Newton method viewpoint, the preconditioning
can be seen as

w = u®) — PL*(Lu® — uy).

In the viewpoint of the linear system (5.41), the (invertible) precon-
ditionner, noted Q, is inserted as

QLu = Qu;. (5.60)

The idea of (5.60) consists in choosing Q such that QL is sparse and
easy to invert [Yin15; CMS23; LY18]. So that,

u=(QL) 'Qu;.

Despite their clear interest, the numerical implementation of these
preconditioning methods is left for future work. This means that the
numerical results presented in Chap. 6 are all obtained with the GD
method (and accelerated variants) and the Lipschitz constant estima-
tion method explained in Sec. 5.4.3.
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5.5 Discussion

What has been done

This chapter proposed a comprehensive review of a discrete method
for modeling the diffraction of electromagnetic waves through an in-
homogeneous medium. Starting from the foundational assumptions
that lead from Maxwell’s equations to the inhomogeneous Helmholtz
equation, the continuous Lippmann-Schwinger equation was first ob-
tained by isolating the scattering potential in the model. The different
approximations to this model were explained and discussed. Then, an
efficient discretization method was presented. Finally, first-order op-
timization methods were used to solve the subsequent square linear
system to compute the diffracted field from the knowledge of the in-
cident illumination and the diffracting RI distribution in the discrete
Lippmann-Schwinger equation.

Limits and Open Questions

For the sake of simplicity, this chapter has covered the scalar theory of
diffraction, ignoring polarization effects, and also ignoring the possible
anisotropy of the dielectric permittivity of the medium. An interesting
direction would be to extend this framework to vectorial 3-D diffrac-
tive imaging [Ma+18, App. A]. More generally, the gradual removal
of the simplifying assumptions behind the Wave equation, and shown
in Sec. 5.2.1, to develop a very general numerical model of electromag-
netic diffraction is an attractive goal.

Among the mathematical objects that will be introduced in Chap. 6
are the Implicit Neural Representations (INR). Such deep neural network
architectures can be trained to satisfy known partial differential equa-
tions like the (Wave) equation. In such situation, they are usually called
Physics-Informed Neural Networks (PINN). A clear advantage of PINN is
their ability to provide a continuous representation of the object of in-
terest. An open question is to determine how PINNs compare to the
various discrete models covered in this chapter.

In the aim to improve the convergence rate of first-order optimiza-
tion method to invert the discrete LS equation, future works will imple-
ment the preconditioning techniques raised in Sec. 5.4.4 accompanied
with comparative numerical experiments. The limitations highlighted
in this chapter were mainly in the speed of the system solving rather
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than in truly physical limitations. We look forward for a deeper study
of the physical mechanisms occuring for very high contrast values,
i.e., high variation of dielectric permittivity, and breaking the validity
of our assumptions.
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5.6 Appendix

In this appendix, we detail a few other approximations to the LS model
than the First-Born approximation.

5.6.1 Other Approximations to LS

Rytov Approximation

The following derivations are inspired by [MSG16]. In order to derive
the Rytov approximation, the variables ¢ and ¢; are introduced s.t.

U(r) == e
Ui(r) := e?i(r)
@(r) == @i(r) + ¢s(r). (5.61)

Note that Us is now computed as
Us(r) = U(r) — Ui(r) = e®) [e?s(1) —1]. (5.62)

The goal is to obtain a differential equation as a function of the
phase ¢s(r) only. First, (5.23) and (5.24) can be recast as

(V2 4+ K2,)e) — 0
(V2 + kfn)e%(’) = (V*+ kfn)e(”(’) = —f(r)e?™

Identity 5.4 can be used to transform the Laplacian in both equations
and to yield

V2gi(r) + | Veill5 + k& =0 (5.63)
V2o(r) + ||Vl + k& = —f(r). (5.64)

Inserting (5.61) into (5.64) and also exploiting (5.63) gives
VEgs(r) +2Vs(r) - Vi(r) + |V s ()2 = —f (1) (5.65)
To simplify (5.65), we make the observation that
V20 (r)Ui(r) +2V s (r) - Vi (r) Ui (r) = (V2 + K2 Ui (r) @s(r). (5.66)
This is indeed verified with

VE(Ui(r)gs(r)) = V2Ui(r)gs(r) + 2V Ui(r) - Vs (r) + Ui(r) Vs (r)
= ke Ui(r)@s(r) +2Ui (1) V gi(r) - Vs (r) + Ui(r) Vs (1)
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Multiplying all terms in (5.65), we can substitute with (5.66) to obtain
(V2 + k) Ui(r)gs(r) = —Ui(r) [[lgs(r) |13 + f ()] (5.67)

The Rytov approximation consists in assuming that the phase gradi-
ent of the scattered field is small compared to the scattering potential.
In other words, ||V s(r)||3 < |f(r)|. Re-leveraging the Green function
G, this local equation (5.67) can be integrated in (2 as

‘/Q(Vz + 2 Ui(F) s (¥)G(r — #)dr = /Q —Wi(r) f()G(r—+")dr
- /Q Ui(r) s (1) (r — #')d¥ = — /Q Ui(¥)F(F)G(r — +)dr,
to finally give

2 — Jo fUE)G(r — r)dr
gs(r) = Ui(r) .

(Rytov)

Comparing (Rytov) with (First-Born), it appears that the scattered field
of the Rytov approximation Ug(r) can be computed from the scattered
field of the First-Born approximation Ug(r) := U (r) — Ui(r) and vice-
versa by using (5.62). It writes

Ur(r) = Ui(r) {exp <LLIZIT((:))> - 1]. (5.68)

The Rytov approximation is known to represent a better approximation
than First-Born [MSG16], and it is obtained as easily as the First-Born
approximation thanks to (5.68). In contrast to First-Born, where the
total phase change ¢(r) must be smaller than 27t, Rytov only requires
that the phase change induced along a path is smaller than the variation
of refractive index along this path scaled by the used wavelength A
[kak0101]. This condition remains valid for thicker samples than First-
Born.

Beam Propagation Method

The Beam Propagation Method (BPM) [Kam+16b; Pha+18] obtains the
wavefield in space U(r) by alternating evaluation of diffraction and re-
fraction steps. By decomposing U into a complex envelope a and a car-
rier paraxial planewave as U(r) := a(r)en?, the Helmholtz equation
can be particularized to a(r) [Kam+16b, App. A]. After a slowly varying
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9%a

envelope approximation @‘ < |kmg—g|, and a small perturbation ap-

proximation (An(r))? < 1 with the variation in RI An(r) := n(r) — np,
this gives the paraxial Helmholtz equation

3 .
a—za(r) = <2IimVi + ikmAn(r)>a(r), (5.69)
with V3 = aa—xzz + 38722- On the right hand side of (5.69), the first term

relates to a free-space propagation of the envelope a, and the second
term relates to the application of a phase screen. The resulting discrete
model is an iterative method writing as

a(x,z + Az) = e B2 F 1 E La(-,2) }K) (BPM)

with a distance Az := L,/N, between consecutive phase screens and

the paraxial free-space propagation kernel K(w) := exp (%) .
m m—|lw

The initial condition in (BPM) is a(x,0) := Uj(x,0). The Beam Propa-
gation Method is also known as Phase Screen Method for atmospheric
turbulence modeling [Fla%4].

Wave Propagation Method

There also exists the Multi-Slice Wave Propagation Method (WPM) which
divides the RI volume into slices of thickness Az and propagates the
light field slice-by-slice [MXP17]. The main difference with BPM is that
it does not make the paraxial approximation. The total field is com-
puted iteratively as

U(x,z+ Az) = F, {F{U(-,z) }H(r, ")} (WPM)

with the Angular Spectrum propagation kernel

H(r,w) := exp (iAz/k?n?(r)||w|?*) which contains the RI information
at the slice of depth z.

Split-Step Non Paraxial Method

The Split-Step Non Paraxial (SSNP) method computes the total field
slice-by-slice like BPM and WPM. In SSNP, the Helmholtz equation is
recast as an augmented first-order differential equation as

0,®(r) = H(r)®(r), (5.70)
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where

D(r) = [BUL%)] H(r) = [—vi —Okznz(r) (1) '

The SSNP operator is decoupled as H(r) = Hi + H(r), with (i) the
diffraction operator H; describing the diffraction in the homogeneous
background medium, and (ii) the scattering operator H;(r) based on
the distribution of the scattering potential. They write as

0 1 0 0

Hi=1_v2 2 o] » Har) = [kz( —2(r)) 0"

Like for BPM and WPM,, the sample volume is discretized into a series
of z-slices. In order to compute the field propagating a small distance
Az between two adjacent slices, (5.70) is approximated as a first-order
homogeneous linear system of differential equations with constant co-
efficients. Separating the 3-D components as r := (x, z), the solution is
approximated as

®(x,z+ Az) ~ exp(H(x,z)Az)®(x,z) =~ PQ(x,z)®(x,z) (SSNP)
where ®(x, z) represents the 2D field at the axial position z, and

P =exp (H1Az), Q(x,z) =exp (Ha(x,z)Az).

Eq. (SSNP) is an approximation in the sense that we assume that ®(r)
and H(r) are constant in the interval [z,z + Az). Moreover, since Hy
and H»(r) do not commute, the decoupling only holds approximately
when Az is small, i.e.,

exp(H(x,z)Az) = exp(H1Az) exp(Hz(x,2)Az) + O([Hy, Ha(x,2)](Az)?).

5.6.2 Proof of the Fourier Diffraction Theorem

This section provides a simple proof of Th. 5.1.

Proof. Inserting the expression of the incident planewave Uj(r; ki) =
e~k as well as the expression of the Green function G defined in (5.25)

into the scattered component U (r; k;) of (First-Born) yields

(s k) eikm|r—7'| —1kiTr’d , (5.71)
$(r; f 47t|r — 7 r. .
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First, the 3-D components are separated as r := (x,2), 7 :=

ki = (wi,iy(wi)) with
n(w) == \/ki — [w]3, (5.72)

By separating the coordinates into XY and Z components, extending
the integration over R® without consequence, and considering the Wey!
decomposition [Bor+99] of the Green function into a superposition of
planewaves (highlighted in green), (5.71) modifies as

(x,2'), and

—in(w)

ki) = [ Jr f(xlrZ/)e_i“’iT"/e_i”(“’i)Z’ 8;3 Jr2 elw’ (x=x)e e 3 " dwdx'dz.
(5.73)
Many Fourier transforms in (5.73) are progressively explicited as

us rk / / f 71w x 1w T(x— x)dx/efuf/(w,) e—iﬂ(w)\z—z'\dz/dw
1K) = 47 Joo o 27 o 1(w)

=577 Jo T U z/mw+w»}e—mw»z/ei’i”(“’”z’z"ewxdz'dw
T2 m e Var Jg TPV 1 1(w)

i ein(w)z

T 2ym e ()

flw+ wi, n(w;) — /(w))ei“’Txdw,

(5.74)
with f := F3f and where we particularized to transmission imaging (i.e.,
z > 0 > Z) to get the last line. Passing the 2-D Fourier transform on the

left side of the equality by multiplying both sides by - Jr2 i@ xdx
gives the Fourier diffraction theorem, which concludes the proof. O
5.6.3 Proof of Claim 5.2

Proof. (<) Givenwa > 0, for all u := aL*u; ¢ ker L we have

IILuH .
|l

ju*(I—aL*L)u| = |ju|?*1 - (5.75)

If «||L||> < 2, then, by definition of the operator norm, « HHLuuHH; < 2,
hence
|| Luf?
—at > L (5.76)

Furthermore, u ¢ ker L = ||Lu|| # 0. Hence

2 2
Il Ll

14
]| ]2

<1 (5.77)
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Combining (5.76) and (5.77) gives

| L] |2
]2

‘1—0( ‘<1,

which, when inserted into (5.75), shows that

|u*(I—aL*L)u|

I —«L*L|| :=su < 1.
A Tk
O
Proof. (=)
L 2
|I—aL*L|| =sup |1 - ucH u]i | <1
" o]
Breaking the absolute value yields two inequality conditions
|| Lu|® . || Lu||*
sup 1 —a <1, and inf1—u« > —1. (5.78)
o [u]? u [ul?
Focusing on the right part of (5.78), one has
|| Lu|® 2
sup « =uw||L||® <2
P e~
which concludes the proof. O
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Diffraction Tomography
with Implicit Neural
Representations

THREE-DIMENSIONAL refractive index distribution imaging by diffrac-
tion tomography is studied in this chapter. The nonlinear sensing model
derived in Chap. 5, which uses the discrete Lippmann-Schwinger equa-
tion, is combined with an Implicit Neural Representation (INR)! in order
to propose a recovery procedure that is accurate, modular, and leverages
automatic differentiation for the iterative error minimization involved.
The main achievement of this chapter is to discuss the pros and cons
of the “INR + discrete nonlinear sensing model” combination through
several numerical experiments.

The codes developed in the context of this chapter can be found at
https://github.com/olivierleblanc/ colsi.

6.1 Introduction

The goal of this chapter is to understand Fig. 6.1. The real physics of
diffraction tomography (upper left) is approximated by a sensing model
(lower left) that uses the (LSd) model derived in Chap. 5. Multiple
views of the field diffracted by the scattering potential volume are col-
lected by consecutive rotations. The candidate discrete volume is gen-
erated by querying an INR on a regular grid. By associating a loss

LA neural network architecture specifically designed for continuous object repre-
sentation.
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function—consisting of a data-fidelity term and a regularization of the
volume—to the INR, its weights are updated iteratively via the pop-
ular Adam algorithm in the aim to minimize this loss function, and
consequently to reconstruct a continuous representation of the RI dis-
tribution.

Camera images

Diffracted field U(T)§

Recovery

Loss function

Scattering
Planewave potential

&
=
I
Q_<

Modeled _.[l;(y, #) =Ly — A@)|3 + R(f¢.o)]

Camera images

illumination vd’[: Gradient

backpropagation

Adam
[¢(k) — ¢(’€—1) — g(vd)[')] Optimization
step

Candidate

Sensing model

Implicit Neural Representation

Fig. 6.1 Illustration of the diffraction tomography context. A planewave U; illumi-
nates a scattering potential f, and the diffracted field U is recorded by a camera. Mul-
tiple views are accumulated by rotating the object, yielding a measurement vector y.
The volume is reconstructed through its continuous representation by an INR. A can-
didate discrete volume f, is generated from queries of the INR f, () at the locations

of a 3-Dregular grid G. Candidate camera measurements A(¢) are computed from the
(LSd) sensing model. The weights ¢ of the INR are updated iteratively to minimize a
loss function £. The Adam algorithm, used for the weights update by the means of a
specific function g of the loss gradient V£, is described later in Algo. 6.2.

6.1.1 Motivation
Diffraction Tomogaphy

Diffraction tomography is an advanced imaging technique used to re-
construct the internal structure of an object by analyzing how waves,
such as X-rays, sound waves, or electromagnetic waves, scatter as they
pass through it. Unlike conventional tomography [KS01], which as-
sumes straight-line propagation of waves, diffraction tomography ac-
counts for the wave-like nature of the signals, incorporating phenom-
ena such as diffraction and interference. This method involves collect-
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ing data from multiple angles and using mathematical algorithms to
solve the inverse problem of reconstructing the object’s properties. By
leveraging the wave interactions with the internal features of the object,
diffraction tomography provides higher resolution images and greater
detail, making it particularly valuable in fields such as medical imag-
ing, materials science, and nondestructive testing.

There are dozens of applications to diffraction tomography. In med-
ical imaging, it is particularly useful in optical coherence tomography
for detailed visualization of biological tissues, aiding in the diagnosis
of retinal diseases and other conditions [Reb+15; Ela+18]. In materials
science, diffraction tomography is employed to examine the internal
structure of composite materials and detect defects or inhomogeneities
at a microscopic level, ensuring material integrity and quality [MI07;
MSW12]. Furthermore, in the field of nondestructive testing, it is used
to inspect the internal features of critical components such as aerospace
parts, identifying flaws or damages without causing damage to the ob-
jects being analyzed [PRG16; Ham+07]. These applications highlight
the versatility and precision of diffraction tomography in capturing in-
tricate internal details across various domains.

Implicit Neural Representations

An Implicit Neural Representation (INR) is a neural network that can en-
code continuous spatial data by nonlinear combinations of continous
functions, allowing a compact and flexible representation of complex
structures and enabling applications such as high-resolution image re-
construction, 3-D shape modeling, and efficient signal processing.

The recent advent of INRs has opened new avenues in the field
of diffraction tomography, offering a promising alternative to tradi-
tional voxel-based imaging techniques. This approach allows the pre-
cise reconstruction of complex structures with fewer parameters, ef-
fectively capturing fine details and smooth variations within the ob-
ject. INRs naturally handle continuous rotations of the object. Further-
more, INRs are particularly well-designed to solve partial differential
equations, like the Helmholtz equation. They hence easily integrate the
wave-based physics of diffraction, facilitating more accurate modeling
of wave propagation and scattering phenomena.

INRs are not black-box deep learning techniques used to solve
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inverse problems; rather, they are sophisticated tools only used for
signal representation. The use of INR in this chapter does not rely
on the typical supervised learning paradigm whose training requires
groundtruth input-output pairs—rarely available in emerging applica-
tions like diffraction tomography. Instead, INRs can be trained in a
self-supervised manner by first representing the RI object, then choos-
ing any sensing model to compute candidate observations, and finally
optimizing the network to construct a RI distribution that fits the data.

Nonlinear Inverse Problem

In electromagnetic wave diffraction, the diffracted field can be inter-
preted as a polynomial function of the RI distribution with an infinity of
orders with progressively decreasing influence. This means that recov-
ering the RI distribution from a subset of the diffracted field represents
a highly nonlinear inverse problem. Interestingly, as shown in Chap. 5
with (5.45), the degree of nonlinearity is inversely related to the diffrac-
tion power of the object. This diffraction context thus provides a nice
realistic example of an inverse problem with a tunable degree of non-
linearity.

There are many results for characterizing the amount of informa-
tion acquired by a linear sensing model. In diffraction tomography,
the closest theoretical result is the Fourier diffraction theorem—directly
relating the Fourier transform of a 2-D slice of the diffracted field to
the Fourier transform of the RI distribution. In the case of a nonlin-
ear sensing model, there are very few analysis characterizing the ac-
quired information. Hopefully, in this fuzzy inverse problem context,
the direction to image recovery can be driven by both the first-order
approximation which is the Fourier diffraction theorem, and the physi-
cal intuition of light propagation. The intended benefit of considering a
complicated nonlinear inverse problem is to overcome the current lim-
itations of linearized sensing models to recover high contrast objects.

6.1.2 Related Work

We mention several works closely related to the scientific questions
tackled in this chapter.
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Diffraction Tomogaphy

In 1969, [Wol69] proposed a ground-breaking idea for 3-D Optical
Diffraction Tomography (ODT) based on the First-Born approximation.
Since then, many contributions tried to improve the recovery per-
formance, with algebraic reconstruction techniques [KS01], the Ry-
tov approximation [Dev81], and more recently multi-slice methods
like BPM [Kam+16b] and SSNP [Lim+19], and finally the convolu-
tional Lippmann-Schwinger model [SPU17; Pha+20; Liu+18; Kam+16a;
Ma+18], a.k.a. recursive Born. Orthogonal to these works exploiting the
physics of diffraction to recover the image, ODT with a CNN decoder
was proposed in [SXK18].

Unlike traditional ODT, which employs interferometry to capture
complex-valued light fields, Intensity Diffraction Tomography (IDT) mea-
sures only the squared amplitude of the scattered light, as in conven-
tional digital cameras. The cost of this simplification of the optical hard-
ware implementation is a more ill-posed inverse problem to solve, with
a phase retrieval challenge now added to the diffraction tomography
problem. The inherent flexibility of IDT has led to the development
of various illumination techniques, including those that integrate ob-
ject scanning [GW02; JG15], angled [Lin+18] and multiplexed [TW15;
MT19] illumination, or pupil engineering [Ngu+17].

Like for ODT, image recovery has been demonstrated in IDT under
the First-Born approximation [Liu+22; Lin+18; Wu+19], using multi-
slice methods such as BPM [Pha+18], and SSNP [ZWT22], and multi-
layer Born [Che+20a].

Implicit Neural Representation

While [Pha+20] and [Che+20a] represent the closest works to our ap-
proach in terms of forward acquisition modeling, both of them, as well
as the other works mentioned above, required an explicit recovery al-
gorithm involving the computation of gradients with respect to the ob-
ject voxels. [Kam+15] proposed to reconstruct the discrete volume with
BPM by iteratively updating the voxels using the backpropagated com-
putations of their gradients; an idea that leads to INRs and automatic
differentiation. [ZH20] explored a spatial representation of the volume
with a 3D CNN in a deep image prior fashion. This was another way
to get a discrete representation of the object.

In the context of view synthesis, [Mil+20] paved the way for Im-
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plicit Neural Representations, showing that plugging a positional encod-
ing layer (which maps input coordinates to spatial frequencies) in front
of a classical Multi-Layer Perceptron with ReLU activations provides a
deep architecture capable of learning efficiently to provide a continu-
ous representation of a scene. This architecture is now known to be-
long to the class of Fourier Feature Networks (FEN). SInusoidal REpresen-
tation Networks (SIREN) came out in the same period with similar con-
tinuous representation performances. The expressiveness of FFNs and
SIREN in the Fourier domain has been theoretically understood later
with [Yuc+22; Tan+20]. There exists hundreds of declinations of INR
architectures, passing by adaptive coordinate networks [Mar+21], hash
encoding [Miil+22], or positional encoding with Radial Basis Functions
[ZBG24].

The combination of INR with the concept of Physics-Informed Neu-
ral Networks (PINN) [RPK19]—an INR directly trained on a differential
equation like Helmholtz—seems to be a promising way to avoid the
need to discretize the volume to inject it in a discrete sensing model.
Using PINNSs to solve the inhomogeneous Helmholtz equation is chal-
lenging because the loss function depends precisely on the sought RI
distribution. We report a proposition to tackle this challenge in 2-D
given in [Che+20b]. However, the use of PINNSs is out of the scope of
this thesis.

The goal here is to study the interaction between an INR and the
discrete Lippmann-Schwinger forward sensing model for diffraction
tomography rather than to provide state-of-the-art reconstructions per-
formances. Hence, only the classical FFN and SIREN architectures will
be analyzed here with a very small parameterization compared to the
upper cited works.

Nonlinear Inverse Problem

The discrete Lippmann-Schwinger model used for this diffraction to-
mography problem yields a nonlinear inverse problem more compli-
cated than well-studied problems as one-bit CS [BB08] or phase retrieval
[She+14]. There seems to exist some interesting literature in the direc-
tion of Volterra series [TD00; BOCO03]; path unexplored in this thesis.
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6.1.3 Chapter Contributions

Combining Lippmann-Schwinger and INRs: This work demonstrates
the first combination of using the discrete Lippmann-Schwinger equa-
tion to model light diffraction with an implicit neural representa-
tion. The reconstruction follows an error backpropagation rule similar
to [Liu+18], but that is applied to the weights of the INR, instead of
the voxels of a discrete volume. Furthermore, the automatic differentia-
tion process avoids the need to iteratively compute a Jacobian matrix to
solve the inverse problem as in [SPU17, Sec. 2.2.1], thus also paving the
way for nonlinear intensity diffraction tomography (not covered in this
chapter).

The continuous representation with an INR offers a staightforward
way to handle rotations compared to voxel-wise representations that
require another interpolation technique to handle the rotations, like bi-
linear [JG15] or bicubic. For the rotations, we stress an equivalence
between incident field and object rotation in Claim 5.1 in order to
play with object rotations, and keep an incident field aligned with the
boundaries of the object bounding box, similarly to [MJR23].

Numerical comparison between First-Born and Lippmann-Schwinger:
numerical image reconstruction experiments provided in Sec. 6.5.2

compare the Lippmann-Schwinger and First-Born models. In particu-

lar, contrast profiles and SNR curves are given in Fig. 6.9 and Fig. 6.10,

respectively. Through different slices of the reconstructed object, it is

shown that the First-Born model fails to represent the inner content of

refracting elements like beads.

The provided analyses have all been obtained with a Tesla A100
GPU? provided by the supercomputing facilities of UCLouvain (CISM)
and the Consortium des Equipements de Calcul Intensif en Fedération
Wallonie Bruxelles (CECI) funded by FRS-FNRS, Belgium.

6.1.4 Notations Specific to This Chapter

The RI volume f(r) will be considered enclosed in a box ) with
physical dimensions Ly, Ly, L, along the X, Y, Z-axes, respectively.
The position r € ) is associated with normalized coordinates ¥ =
(', y,2) == (},%,%) € [0,1]% for L := max(Ly, L, L), given as
input to an INR. The discrete volume f is defined on a regular grid
Q( Ny, Ny, Nz) © Qwith Ny, Ny, N; voxels along the axes. The correspond-

2h’ct'ps: / /www.nvidia.com/en-us/data-center/al100/
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ing voxel resolutions are written Ax := Ly/N,, Ay := L,/N,, Az :=
L,/ N;. The normalized version of the volume is defined on the unitary
grid gEN:(rNy/Nz) c [0,1]3.

6.2 Preliminaries

A brief explanation of automatic differentiation and neural network weight
optimization is given below.

Automatic Differentiation

Deep neural network architectures are used in this chapter to provide a
continuous representation of the RI volume of interest. The success of
“deep nets” is due to the principle of Automatic Differentiation (AD) and
backpropagation, briefly explained here.

In most cases, it is possible to break the numerical computations
into a composition of elementary operations, and to create a graph rep-
resenting their interdependencies. From this graph, the partial deriva-
tive of some quantity—generally an error term—with respect to the in-
termediate variables can be propagated step-by-step based on the chain-
rule.

o rU(]\/ v3

Fig. 6.2 Computatlonal graph of the example f(x1,x2) = log(x1) + x1x2 — sin(xp)
given in [Bay+18].

To illustrate AD, let us borrow the example f(x1,x2) = log(x1) +
x1X2 — sin(xy) from the excellent review [Bay+18]. The computational
graph for f(xq,x2) is given in Fig. 6.2, with the value of the variables
{v;}>__, given in Table 6.1. AD in reverse accumulation mode propa-
gates derivatives backward from a given output. This is done by com-
plementing each intermediate variable v; with an adjoint

5= Y
[ avi/
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which represents the sensitivity of a considered output y; with respect
to changes in v;.

Table 6.1 Reverse mode AD example, with y = f(x1, xp) = log(x1) + x1xy — sin(xy)
evaluated at (xq,xp) = (2,5). After the forward evaluation of the primals on the left,

the adjoint operations on the right are evaluated in reverse. Note that both aa—;jl and aa—;jz

are computed in the same reverse pass, starting from the adjoint 75 = 7 = g—; =1

Forward Primal Trace Reverse Adjoint (Derivative) Trace
vo1= 11 =2 A 7, =7, =5.5
vy = T2 =5 T2 = Vo = 1.716
v =lInv_y =1In2 17,1=17,1+171%L1 =0_1+01 /v =55
vy =v_1 Xv9g =2X5 To —'Do+v2%§ =170 + V2 X v—1 = 1.716
17_1:172667;:2; = V2 X Vg =10
v3 = sinwvo =sind o = 633—33— =173 X cosvg = —0.284
vy =v1 +v2  =0.693 + 10 Vo = mg—z;l =74 x 1 =1
7 =y 5% =7 x1 =1
vs =vg—v3 = 10.693 + 0.959 U3 =U55% =T x(-1) =-1
T ’Ds% =5 X1 =1
VY oy =us = 11.652 Ts =7 =1l

In Table 6.1, we see the adjoint statements on the right, correspond-
ing to each original elementary operation on the left. In simple terms,

we are interested in computing the contribution 9; = aa% of the change
in each variable v; to the change in the output y. Taking the variable vy
as an example, we see in Fig. 6.2 that it can only affect y by affecting v,
and v3, so its contribution to a change in the value of y is given by

dy  dy dv dy du3 . _0duy _ 0U3

870 - 802 avo 303 al)o or th = aZ)() +0s aUO'
After the forward pass on the left side, we do the backward pass of the
adjoints on the right side, starting with 75 = § = % = 1. In the end we

. . oy _ - WY o s
get the derivatives 57 = Xy and 53> = ¥, in just one reverse pass.

It is worth mentioning that, compared to numerical differentiation,
partial derivatives computed with AD are exact as long as the deriva-
tive of each function involved in the computational graph has an exact
expression.

Neural Network Weight Optimization

Once the sensitivity V4 L(¢) of the error £ with respect to all weights
¢ < R? of a NN has been computed, we need to define a rule that up-
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dates their value accordingly. This update is computed using optimiza-
tion techniques like GD described in Sec. 5.4. We remind in Algos 6.1-
6.2, the Stochastic Gradient Descent (SGD) and Adam [KB14] optimizers,
respectively. Both algorithms are called stochastic because the error is
computed, during each iteration k € [K], with respect to a random
subset (a.k.a. batch) ¢ g _of the training data, with Sy C [P] and [Sx| = B
for a batch size B. This provides a tradeoff between computing the er-
ror with respect to a sufficient amount of training data, and updating
frequently the weights of the NN to enjoy a fast training procedure.
In the ADAM algorithm Algo 6.2, we do not explicit the random sub-
set selection and rather present the non-stochastic version for a simpler
reading of the algorithm.

Algorithm 6.1 Stochastic Gradient Descent (SGD)

Require: « (learning rate), ¢(0) (init.).

1: fork < Kdo
2: Draw a random subset Sy C [P] uniformly at random.
k k—1 _ .
3: (P«(Sk) = (pgk ) ocV¢Sk£(q)(k ) > Update weights.
4 ¢ =90
Algorithm 6.2 Adam
Require: « (learning rate), B1, B2 € [0,1) (decay rates), 4)(0) (init.).
1m0 =0
200 =0
3: fork < K do
& g = V E( -1) > Weights gradients
5: m) = +(1—p1)g® > biased 1 moment estimate.
6: vk ,Bzv k 1) +(1—B2)(g"))? > biased 2°¢ raw moment
estimate.
7: m® =m® /(1 - BY) > bias-corrected 1% moment estimate.
8 o) = oM /(1 - [52) > bias- Corrected 2"d raw moment estimate.
9: p®) = k=) —wm® /(oW 4 ¢) > Update weights.
10: ¢ = ¢pK

In Appendix 6.7.1, we quickly verify that Adam outperforms SGD,
then use Adam for the rest of the analysis.
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6.3 Implicit Neural Representations

This section introduces the concept of Implicit Neural Representation
(INR). An INR is a neural network architecture aiming at representing
complex scenes continuously. In our diffraction tomography context,
the goal is to train an INR to map the input coordinates r = (x,y,z) €
IR3 to their associated scattering potential value f(r) € C.

In this chapter, the two approaches considered are based on Fourier
representation. To explain the philosophy of the approach, we recall the
Fourier transform (and its inverse) of a three-dimensional continuous
periodic signal p(x):

1 oo T
Plk] = / p(x)e 2 ¥dy
0

p(x) = Y Plk]e?™'x. (6.1)
kez?

The role of the INRs presented below is to attempt to approximate the
Fourier decomposition (6.1) from nonlinear combinations of a subset
of these frequencies k. The use of spreaded support functions like the
complex exponentials of the Fourier representation was the key to the
first demonstrations of working INRs. Indeed, previous attempts to
map input coordinates directly to image (in the broad sense) values
using an MLP with ReLUs failed, especially in representing sharp tran-
sitions [Mil+20, Sec. 5.1].

6.3.1 Architectures

In this thesis, two architectures are used: Fourier Features Networks, and
SIRENS.

Fourier Feature Networks The early Fourier Feature Network (FFN)
technique [Mil+20] consists of a Fourier series decomposition input to a
classical MultiLayer Perceptron (MLP) [Ros58; Tan+20] with Rectified Lin-
ear Unit (ReLU) activation functions. In the FFN architecture, depicted
in Fig. 6.4(a), the 3-D spatial position r is first mapped to the Fourier
basis with a priori chosen 3-D spatial frequencies K € R**3. The first
layer of an FFN computes

0(r) := (7KK 6.2)

with the normalized position ¥ € [0,1]® s.t. ¥ = L¢, and L =
max(Ly, Ly, L;) defining the physical dimensions of the RI volume. The
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degrees of freedom of this layer, coined Positional Encoding, are associ-
ated to the choice of the initial frequencies K.

Fig. 6.3 Two positional encoding possibilities. (a) Radial arrangement in the (ky — k;)
plane and linear arrangement along the k,-axis. (b) Random Gaussian frequencies.

In the radial encoding proposition of [Liu+22] shown in Fig. 6.3(a),
the frequencies are chosen as K = [I;xy ] with a radial encoding in the
z
XY-plane

ny = (2] (COS(QZ)I - Sin(el),O))ZEHLrOt]],]EIILXy]] E :[RLrO\‘.nyXS

(depicted in red) and a linear encoding along the Z-axis; Kz =
(2'eq Jie[r.] € RE=*3 (depicted in blue). The total number of frequen-
cies is given as KC = LyotLy, + L, where Ly, is the number of frequencies
linearly separated along the k,-axis, then repeated L. times by consec-
utives rotations, and L, is the number of frequencies linearly separated
along the k;-axis. Another choice, more natural, described in [Yuc+22]
and depicted in Fig. 6.3(b), consists in initializing the Fourier encoding
with randomly chosen frequencies K 0 N(0,0213), k € [K].

The Fourier encoding 6 of the spatial coordinates is put in a Mul-
tiLayer Perceptron (MLP) Np—a fully-connected neural network, with
Rectified Linear Unit (ReLU) neuron activations. The nonlinear modu-
lar function represented by the MLP writes

N¢(6) :WL(U'L,lo...ocro)(B)%—bL, (63)

with each layer | composing a linear mapping followed by the ReLU
activation as
o(x) := max(0, W;x + b;).

The trainable weights in (6.3) can be arranged in a vector as

¢ :=vec{Wy,by,..., Wy, by}, (6.4)
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(a‘) (W, bo) (Wi_1,bp1) (Wp,by) (b) (Wo,bo) (Wy,by) (Wro1,bp1) (Wp,br)

Fig. 6.4 INR architectures. (a) In the FFN, a non-trainable Positional Encoding layer (in
gray) maps the normalized 3-D spatial position ¢’ to spatial frequencies Q). The Fourier
samples are then fed into an MLP with ReLU activation functions. (b) A SIREN is an
MLP with sinusoidal activation functions. In both (a) and (b), the final layer is only
linear.

where vec concatenates the vectorizations of all elements in the set. The
FEN finally composes the positional encoding and the MLP as

fo(r) == Np(6(r)), (FFN)

with the subtlety that the network separately outputs the real and imag-
inary parts of fé, (r).

SIREN  Sinusoidal Representation Networks (SIREN) are simply MLP
whose activation functions are sines, as illustrated in Fig. 6.4(b). They
have been introduced in [Sit+20] for their ease in computing deriva-
tives, and thus solving partial differential equations. The complex out-
put of a SIREN is described as

fo(r):=WL(p, 109, 50...09))(t)+bL, (SIREN)

with each layer | composing a linear mapping followed by a sinusoidal
activation as
@,(x) :=sin(w;(Wix + b;)),

and a frequency factor w; tuning the frequency of the sinusoidal map-
ping. Like for FFN, the trainable weights ¢ are the weight matrices
{W,}_, and biases {b;}_; hence follow definition (6.4).

Before assessing the performances of the FFN and SIREN in the
context of diffraction tomography, Appendix 6.7.1 numerically studies
regimes of parameters that accurately reconstruct a discrete volume. It
results that the Adam algorithm exhibits a better convergence rate than
SGD and that the frequency factor wy and number of layers L have
low influence on the reconstruction SNR. It is also seen that the SIREN
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convergeces faster than the FFN but the FFN converges to lower error
values. These observations will guide the choice of SIREN parameters
used for the numerical experiments in Sec. 6.5.
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6.4 Sensing Models for ODT and IDT

In this section, we rebuild two classical observation models in diffrac-
tion tomography. The starting point is the discrete Lippmann-Schwinger
equation (LSd) that computes the electric field resulting from the
diffraction of an incident illumination through an inhomogeneous
medium.

The first, Optical Diffraction Tomography (ODT), consists in directly
observing complex-valued partial information about the diffracted
field u obtained from (LSd). This complex-valued sensing is achieved
by holography principles [Kim11] similar to the 8-step phase-shifting cal-
ibration explained for the MCFLI in Sec. 3.5.2. A drawback of ODT is
the need for a more complicated optical setup. Indeed, cameras can
only record the intensity of the light. Hence, to recover the complex
field, the illuminating field must be physically separated in two parts:
one directed towards the diffracting object, and another, unaltered part,
directed towards the camera and interfering with the diffracted field.

The second model of diffraction tomography, Intensity Diffraction
Tomography (IDT), consists of observing a portion of the intensity® |u|?
of the diffracted field. The IDT context reflects the real acquisition pro-
cess made with a digital camera, and thus requires fewer optical ele-
ments than ODT. However, IDT comes at the cost of losing the phase
information. This leads to a harder inverse problem that mixes diffrac-
tion tomography and phase retrieval [Fie82; BCLO02].

6.4.1 From the Object Domain to the Camera

In either ODT or IDT, once the diffracted field u is known in the object
domain (), it must be mapped to the camera measurement plane I'. In
the simpler case, one assumes I' C G C () and the mapping is simply

modeled as a restriction operator H € RM*N applied to the diffracted
field u.

As it is more computationally efficient to reduce the bounding box
() as much as possible as long as supp f C (), realistic acquisition sce-
narios have the measurement plane far away from the object’s bound-
ing box, i.e., I' ¢ Q). One possibility consists in using the Angular Spec-
trum (AS) formula [MS09] to propagate u up to the plane I'. This solu-

3The absolute value is applied elementwise to the vector u.
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tion is especially convenient if the camera plane is parallel to the XY-
plane of (). Otherwise, the known diffracted field # € (2 must first be
interpolated to a plane parallel to I' before using the AS method. The
polyvalent solution consists in re-using (LS),

U(r) = Ui(r) + /Q U ) f(r)G(r —#)dr,

and restricting the computation of U to the discrete set of positions
defining the camera plane I' = {ry,...,r)p}. In discrete form, it writes
[Pha+20]

ur = uir + (~3Dfu (6.5)

where ur,uir € CMand G € CMiN models the convolution similarly
to G in (LSd). The mn-th entry of G writes

eikm |1’m —Tn |
G = Sl =) = =]
m

forr, e T'andr, € Q.
For the sake of simplicity, the AS will be considered for computing
the measurement images, as illustrated in Fig. 6.5(a). In discrete form,

the AS writes
ur = F*Dy,Fu = Hu, (6.6)

where F is the 2-D Fourier transform, h is the AS propagation kernel
[Pha+20, Eq. (16)], and H is the propagation operator defined as

H := F*D,F. (6.7)

Camera pupil In practice, the diffracted field at the measurement
plane ur is recorded by a camera that has a limited aperture and may
contain many optical elements to correct for some aberration effects
[MCWO05; Pha+20]. The effect of this aperture, or pupil, is modeled by
a 2-D function p(x) for x € R2. Consequently, the sensed quantity is
actually

e () = (p Un)(x) = [ p(x—*)Ur(x)dx’. 6.8)

Using the convolution theorem, (6.8) can be written as

Ur(x) = 75 Hplr)[x] = /r p(k)ar(k)e* *dk. 6.9)
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with p = Fp, U := FU. The discretization of (6.9) shows that the
effect of the camera can be modeled by a linear operator P € CM*M
defined as

P:=F,'Dg,F,
where p € CM is the discretized Fourier transform of the pupil function

p(x), generally modeled as a simple mask, and F, computes the 2-D
FFT. For simplicity, no pupil effect is considered in this chapter.

6.4.2 Multiple Views and Object Rotation

Because of the information loss in depth, and also partially explained
by the Fourier diffraction theorem (5.29) with the missing cone problem
[Lim+15] illustrated in Fig. 6.5(b), the RI volume cannot be recovered
from a single snapshot of the diffracted field. The tomography principle
consists in illuminating the object from different angles in order to in-
crease the acquired information.

Camera
€y

Diffracted field U('I‘)§

Missing

.- a cone
“§ Scattering )
potential ,,/
l"

Pldnerve

Y illumination -
(a) (b)

Fig. 6.5 (a) Diffraction tomography context. The illumination and camera are fixed,
and the object f is rotated first by an angle ¢ around the X-axis, then by an angle 6
around the Z-axis. The camera plane I' is placed parallel to the XY-plane at a dis-
tance z¢ from the object domain Q. (b) 2-D illustration of the missing cone problem. If
the object f is observed only by rotations ¢ € [—45°, +45°], for instance, the Fourier
diffraction theorem 5.29 predicts that the frequency sampling of f is covered by this
red region, leading to a cone of unseen frequencies.

In this chapter, the different views are obtained by rotating the ob-
ject f, as depicted in Fig. 6.5(a). Starting from an arbitrary orientation
set at angle ¢ = 0 around the X-axis, and angle 6 = 0 around the Z-
axis, the j-th rotation of f is obtained as f(R(6;, ¢;)r) with the rotation
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matrix

C9]‘ —59]‘ 0 1 0 0
R<9jr 90]') = RZ(Qj)RX<(P]’) =|s0; cb; O 0 cp; —sg;
0 0 1 0 s@; co;
(6.10)
As the diffraction model (LSd) is discrete, a discrete form of the RI

volume is obtained by querying the rotated f on the 3-D regular grid
(L LyLz2)
G, Ny Nz B

f] = (f(R(GJI q)j)r))R(G]',(pj)reg' (6.11)

Remark 6.1. The problem with a volume with varying spatial dimen-
sions Ly # L, # L, is that any rotation modifies its support, as il-
lustrated in Fig. 6.6. In order to keep a rotation-invariant support,
we will simplify the analysis by recovering only cubic objects with
Ly=Ly=L,.

L

Fig. 6.6 2-D illustration of rotating an object with varying spatial dimensions. The
support () is transformed to Q) := {R(6, ¢)r, Vr € Q} so the grid G is not appropriate
anymore to discretize f.

With u; = L;rui the solution of (LSd) computed using one of the op-
timization techniques described in Chap.5with L; := I —-GD fir and the

measurement operator H defined in (6.7), the j-th camera measurement
is thus obtained as

ur,]' = Hu]' = HL}Lui. (612)

The ] images are finally collected in a measurement vector ur € C™
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which reads
ur,() H Lg

ur = E — . Uu. (613)
ur,j—1 HL}fl

In ODT, the measurement vector y € CM is obtained by subtracting
the incident field component of the camera measurements as
H(Lj—1)
Y i=ur —uir = : Uu;. (ODT)
H(L] ;1)
In (ODT), it is the scattered or background-removed field that is observed.

In IDT, the measurement vector y € CM is obtained as the intensity of
the complex field reaching the camera modeled in (6.13). It writes

y = |ur| (IDT)

with y € R¥ (and not CM as in (ODT)).

Remark 6.2. By removing the illuminating component, there is a way
to get a linear sensing model for IDT with the First-Born approxima-
tion. We demonstrate this in Appendix 6.7.3.
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6.5 Recovery Analysis

This section covers the formulation of an inverse problem both for ODT
and IDT, and provides several numerical analyses.

6.5.1 Inverse Problem Formulation

One discrete Guessed True
volume per view Camera images Camera images
" o0 oo
Implicit Neural Representation o® o o
feoo ur o ur o
® Lippmann-Schwinger o o
< A9) o L
@1,

ar,1
8

K

g
oo

ur,j-1 ur,J-1
Adam B
Optimization[(j;(’r> = ¢(k") - g(Vd,l:)]
step
A9)
l—[v¢£]~—[c<y, 9) = lly — A@)I + R<f¢,0)t—_'_‘
Gradient Loss function y

backpropagation
Fig. 6.7 Schematic of the recovery procedure. The INR is queried on | rotations of the
3-D regular grid to generate discrete volumes { f Iy };.:1. The associated observations

A(¢) modeled using Lippmann-Schwinger are compared with the true observation
vector y into a loss function L(y, ¢). The weights of the INR are updated using Adam
(with g a function of the loss gradient explained in Algo. 6.2) based on the backprop-
agated loss gradient VL. This procedure is repeated iteratively until convergence of
the INR weights.

A schematic of the recovery procedure is given in Fig. 6.7. In order
to solve the diffraction tomography problem, a continuous representa-
tion of the scattering potential as f,(r) is obtained by the intermediate
of the weights of the INR computed as

¢ = arg min Ly, ), Ly ¢):=3ly—AP)3+R(fpo) (6.14)

where

m y is the measurement vector associated to the images captured by
the camera.

m A(¢) maps the weights ¢ of the INR to the measurements y ei-
ther in the ODT or the IDT model. It models all the physics of the
acquisition; passing by (LSd) to compute the diffracted field, up
to the propagation to the camera plane I' using (6.6).
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m R(f 4,/0) is a regularization term computed on the first orientation
of the discretized volume f  ; := (fo(r) reg- Inthe results shown
in Sec. 6.5.2, we do not add a regularization term (R(f ) = 0).

Similarly to (6.11), the j-th rotation of the discretized RI volume is
obtained by querying the INR on a 3-D regular grid § as

fo;= (fo(R(6;, 9))1)), o (6.15)

The gradients V4L of the loss function with respect to the INR pa-
rameters are computed by automatic differentiation (described in the
Preliminaries section 6.2) and updated with the Adam algorithm 6.2.

Computational cost For the diffraction tomography context, the mem-
ory load of the gradients computations limits the resolution N =
N;NyN, that can be used for the discrete Lippmann-Schwinger model
computing the measurement vector y. Indeed, as shown in Fig. 6.8
and compatible with [SPU17, Fig. 2], the memory load is directly pro-
portional to NJ which is the total number of queries of the INR. This
dependence is intuitive because the evaluation of the loss function de-
pends on the content of these voxels (see Fig. 6.7), and the gradient of
the error must then be propagated from these voxels back to the INR
parameters. The best transverse resolution (Ny, Ny) can be reached by
computing only one orientation per epoch during the inverse problem
solving, and setting a smaller* axial resolution N..

= =
o N

Memory load (GB)

(= 2 e e

0.0 0.2 0.4 0.6 0.8 1.0 108
NJ
Fig. 6.8 Memory load in GB computed on a Tesla A100 GPU, as a function of the
number of generated voxels NJ where N is the total number of voxels per volume, and
J is the number of rotations of the object, as depicted in Fig. 6.7.

“The depth of the RI object is generally smaller than its width in this application
[Liu+22].
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Remark 6.3. As explained in Sec. 5.4.3, the stepsize « used in the gra-
dient descent algorithm solving (LSd) is chosen in function of the es-
timated Lipschitz constant. Having the stepsize a function of the INR
parameters induces a huge increase of the memory load. In practice,
for the sake of memory savings, the gradient of the loss function is not
computed with respect to this stepsize, considered as a constant value.

6.5.2 Results

For the numerical results presented in this section, Table 6.2 reports
the parameters used for each figure. The background medium is wa-
ter with RI n, = 1.333, and the illuminating field will always be a
planewave of wavelength in vacuum A = 515nm propagating along
the Z-axis, i.e., U;(r) = e'*=¢. In ODT, the camera is placed slightly at
a distance zc = Az behind the volume, with Az := L,/ N,. The (LSd)
model is solved by a varying-stepsize AGD method with a maximum
number of iterations K = 400.

The following experiments are conducted only with SIRENs. The
reason is twofold, (i) the time needed for the simulations behind each
figure is around one day and (ii) Fig. 6.4(a) showed that SIRENs con-
verge faster than FFNs. The initialization of the SIREN weights ¢ ()
follows [Sit+20].
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Fig. 6.9 ODT reconstructions of the three spheres shown in Fig. 6.12(a). (a) The ] = 24
orientations of the volume, corresponding to an annulus of illuminations. (b) Adimen-
sional scattering potential values f(r)Ax? along the X-axis for (y/,z') = (0.5,0.25) in
function of the contrast C € {0.1,0.2,0.3,0.4,0.5} using the FB and LS models; in dot-
ted and dashed lines, respectively. (c) Ground truth in the XZ-plane at y’ = 0.5. (d-f)
Reconstruction of First-Born for C = 0.1, 0.3, 0.5. (g-i) Same as (d-f) for LS.

Fig. 6.9 presents a comparison of the First-Born and LS perfor-
mances in ODT under an annular set of views of angle 45° depicted
in Fig. 6.9(a). The RI object is made of three ellipsoids living in a 3-
D domain Q) of dimensions (Ly, Ly, L;) = (12A,12A,12A) and whose
equivalent normalized in the unit cube G’ are the three spheres shown
in Fig. 6.12. The “true” measurement vector y has been computed using
(LSd) with K = 3000 iterations, aiming to be more accurate especially
for high contrast values. The rest of the parameters are listed in Ta-
ble 6.2.

Fig. 6.9(b) shows the profile of the adimensional scattering potential
value f(r)Ax? (with Ax := Ly/N, = 128.7nm) along the X-axis at the
plane (y/,z") = (0.5,0.25) for contrast values C € {0.1,0.2,0.3,0.4,0.5}.
It is seen that, even without explicit regularization term in the loss func-
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tion associated to the SIREN, both FB and LS are able to identify the
contours of the three ellipsoids. However, it is seen that, because of
the missing-cone problem illustrated in Fig 6.5(b), FB struggles to re-
construct the inside part of the ellipsoids. This can also be seen in
subplots (d-f). Thanks to the multiple-scattering effects modeled by
LS, the ellipsoids are more faithfully reconstructed. It is observed that
the scattering potential value is always underestimated. To explain
this phenomenon, we invoke a leakage argument which is that the solu-
tion obtained from the minimization problem (6.14) always computes
a minimum energy solution, i.e., the solution minimizing the loss func-
tion and with minimal ¢;-norm. This argument is supported with a
proof in the simpler case of a linear system solved by GD given in Ap-
pendix 6.7.2.

Fig. 6.9(c-i) provide slices of the GT, FB and LS reconstructions.
These slices are provided in an (X, Z) plane at ¥’ = 0.5. Note that
the resolution along the X and Z axes are not the same. The colorbars
are adjusted to the range of the GT, which varies between the differ-
ent choices of contrast values. It is seen that the reconstruction quality
decreases when the contrast increases, both for FB and LS.

In the same setting as in Fig. 6.9 but for a fixed contrast C = 0.3 and
varying annular illumination angle ¢ € {0°,10°,20°,30°,40°,50°,60°},
Fig. 6.10 provides another comparative view of First-Born and LS.

Fig. 6.10 shows the reconstruction SNR of the volume reconstruc-
tion in function of the illumination angle ¢. It is seen that, while First-
Born completely fails at reconstructing the inner content of the volume
no matter the illumination angle, LS has a monotonically increasing re-
construction SNR with increasing ¢ values.

Fig. 6.10(c-i) provide slices of the GT, FB and LS reconstructions.
The subplots (d-f) (resp. (g-i)) are shown for ¢ € {0°,30° 60°} for FB
(resp. LS). These slices are provided in an (X, Z) plane aty’ = 0.5. Note
that the resolution along the X and Z axes are not the same. It is seen
that, similarly to Fig. 6.9, FB does not succeed in representing the inside
content of the spheres, this is the reason why the associated reconstruc-
tion SNR value is so small. While the volume cannot be reconstructed
with LS for a single view (¢ = 0°) in Fig. 6.10(g), the reconstruction
quality improves gradually in (h) then (i).

Fig. 6.11 demonstrates that the quality of the solution to (LSd) is
critical for the ODT reconstruction. It shows that the SNR of the recon-

| 271



6 | Diffraction Tomography with Implicit Neural
Representations

=

60

81 —e— First-Born

—— Lippmann-Schwinger

w
(=]
Iumination angle ¢ (deg)

e

0 10 20 30 40 50 60
Illumination angle ¢ (deg)

Ground truth First-Born

1.31
’ () (d) |8 () C (f)
@ '~ O
. 7 X C %
Lippmann-Schwinger %
(8) (h) O =
e 0 )
e _0
o O
0.0

p=0° p=30° p =60°
Fig. 6.10 ODT reconstructions of the three spheres shown in Fig. 6.12(a). (a) The
] = 24 orientations of the volume given for each illumination angle ¢ < {1Oi°}f:0,
each corresponding to an annulus of illuminations. (b) SNR in function of the illu-
mination angle ¢ for FB and LS. (c) Ground truth in the XZ-plane at y’ = 0.5. (d-f)
Reconstruction of First-Born for ¢ = 0°, 30°, 60°. (g-i) Same as (d-f) for LS.
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Fig. 6.11 SNR of the ODT reconstruction in function of the number iterations K used
to solve (LSd), in the same ODT setting as in Fig. 6.9.

struction increases with the number of iterations K used for the AGD
method solving (LSd). The small drop in SNR occuring for K = 200 is
due to the randomness of the initialization of the SIREN weights.
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6.6 Discussion

What has been done

This chapter presented advances in the field of diffraction tomography by
integrating the discrete Lippmann-Schwinger equation with implicit neural
representations (INRs). This novel combination allows for more efficient
and accurate modeling of light diffraction, using error backpropagation
for INR weighting adjustments and bypassing the iterative computa-
tion of Jacobian matrices that is traditionally required. This method-
ological innovation not only simplifies the reconstruction process, but
also supports the development of nonlinear intensity diffraction tomogra-
phy (IDT), which provides a more accurate representation of complex
refractive elements.

In addition, the continuous 3-D image representation provided by
INRs improved the handling of rotations, eliminating the need for in-
terpolation techniques such as bilinear or bicubic methods. This con-
tinuous approach, supported by numerical comparisons between the
Lippmann-Schwinger and First-Born models, underscored the superi-
ority of the former in representing intricate internal structures within
refracting elements. By demonstrating the limitations of the First-
Born model and the robustness of the Lippmann-Schwinger approach
through detailed contrast profiles and SNR analyses, this work estab-
lished a comprehensive and robust framework for high-fidelity image
reconstruction in diffraction tomography:.

Limits and Open Questions

Comparison with classical interpolation techniques: A limitation of
this chapter is the introduction of an INR for diffraction tomography
without benchmarking its performance against classical interpolation
methods, such as linear or cubic interpolation. Beyond a straightfor-
ward numerical comparison, it would have been insightful to explore
the differences in implicit regularization between (i) linear interpolation,
which is limited to representing piecewise linear functions, and (ii) a
SIREN network, known for promoting sparse Fourier representations
[Yuc+22]. Such a study could provide a deeper understanding of how
each approach impacts reconstruction quality and regularization be-
havior.

INRs are not interesting for every application: With the architectures
described in Sec. 6.3, INRs are not very compatible with integral mod-

| 273



6 | Diffraction Tomography with Implicit Neural
Representations

els like the Fourier subsampling models of Chap. 3-4. Indeed, an INR
modeled like in (FFN) or (SIREN) is well-designed for a finite number
of inferences, but computing the Fourier transform of an image f4(x)
with x € IR? at any frequency as [p f¢(x)e%(pk_pf)Txdx like in (3.5)
requires infering the value of the INR function on the whole 2-D space
which is untractable. This incompatibility was the reason why a dis-
crete version of the Lippmann-Schwinger equation (LSd) must be con-
sidered in this chapter. INRs fit more a local view of the physics, as is
the case of PINNs which are INRs trained to satisfy the local form of
differential equations like the Helmholtz equation.

More extensive analysis: The Python toolbox developed for this
chapter paved the way for a unified diffraction tomography frame-
work. Due to limited research time and computational resources, many
of the observed trends have not been extensively analyzed and are
therefore not presented in this chapter. Among them are the SNR in-
crease with the number of views |, the dependence on the arrangement
of illumination angles and on the INR architecture (although briefly
analyzed for discrete 3-D volume reconstruction in Appendix 6.7.1).

The modular organization of the code allows for easy plugging of
other image representations, forward model computations, and inverse
problem solving methods. We would be deeply interested in observing
future numerical analyses including other INR architectures, different
types of RI distributions, and also weight initialization techniques’.

Rotation of noncubic volumes: Supported by Fig. 6.6, we explained
why it is annoying to consider rotations of an object with dimensions
of different lengths. An obvious solution is to consider the object fixed
and rotating the illumination. However, in this case, a camera fixed
behind the object will not necessarily capture the field diffracted by a
high-angle illumination, and rotating the camera plane is accompanied
by other challenges not covered in this thesis.

It is not clear whether the consideration of a rotating illumination
can induce aliasing effects. Still, it was observed in [MJR23] that ro-
tating the object instead of the illumination increases the image recon-
struction accuracy. One perspective of this work is to allow for any
rotation of the illumination, object, and camera position.

5We considered the idea of initializing the weights of the INR by first reconstructing
the measurements backprojected using the First-Born forward operator—out of the
scope of this thesis.
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Improved reconstruction with passive sources: Passive sources are
highly diffracting objects that are generally placed on the sides of the
optical path and reflect most of the incoming light so that they can
be considered as passive illumination sources. We briefly discussed
in Sec. 5.2.5 how the Lippmann-Schwinger equation can adequatly
model the presence of passive sources as if they were new sources of
planewaves, and can thus mitigate the missing cone problem by in-
creasing the illumination angle. Overall, we showed that placing pas-
sive sources at known positions is equivalent to illuminating the object
with a superposition of planewaves.

The benefit of passive sources for the inverse problem solving is ac-
companied with other challenges. If the sources are not sufficiently re-
flective, their influence on the equivalent illumination is negligible. On
the other hand, if the sources are diffracting too much, the Lippmann-
Schwinger model cannot be used to compute the resulting illumina-
tion. Indeed, we showed in Sec. 5.4.2 that the conditioning of the lin-
ear system to be solved for computing the scattered field is getting
worse for objects with high contrast. One solution would be to estimate
the equivalent illuminating field without passing through the use of
Lippmann-Schwinger, assume that the passive sources are far enough
to neglect their interaction with the object to be imaged, and then forget
their existence.

In the same spirit of considering more elaborate illumination, and
more connected to Chap. 3-4, one might consider a speckle illumina-
tion of the object. Speckles are easy to produce experimentally; they
have already been demonstrated under the name of multiplexed illumi-
nation [MT19]. Moreover, the contributions of Chap. 3-4 seem to indi-
cate that compressive imaging is possible for diffraction tomography as
well by the means of random speckle illumination.

First-Born to Lippmann-Schwinger calibration transfer: Experimen-
tal image reconstructions generally require a calibration phase that es-
timates the governing parameters of the imaging modality. Some
have already been performed with the First-Born model for both ODT
[GWO02; JG15; Lin+18; MT19] and IDT [Liu+22; Lin+18; Wu+19]. In
particular, the calibrated linear forward operator contains information
about the illumination angles, the distance to camera, and the pupil function
[Lin+18]. We believe that the data contained in the calibrated tensors of
the FB model could be transferred to the Lippmann-Schwinger model.
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Fully continuous model: A major drawback of the approach pro-
posed in this chapter is the discretization of the volume necessary to
use the discrete Lippmann-Schwinger equation. We have shown in
Fig. 6.8 that querying the INR on a huge 3-D grid completely over-
taxes the memory, making the approach unscalable. To circumvent this,
as already mentioned in the discussion of Chap. 5, an appealing idea
consists in also using a continuous representation for the diffracted field.
In other words, the diffracted field might be computed using a PINN.
If appropriately trained, the PINN would even be able to predict the
scattered field in the camera plane and computing the measurements
would be as simple as querying the PINN at the discrete pixel locations
of the camera.

Mathematically, the total field would be represented by a PINN as
U, (r) with parameters . The INR for the RI object and the PINN for
the total field representations might be alternately optimized by solving
the minimization problem

¢, 7 = argmin A1y —uy,r[3 + Aal[(V2 + kG (r)) Uy ()3 + R(¢,7)
¢/7 N’

Data—consistency Helmholtz Regularization

(6.16)

where the total field in the camera plane is u., r := (U, (r))rer, the INR
for the RI object might directly model the square wavenumber k%p(r),

otherwise one has k?(r) = f(r) + k2, from the definition of the scatter-
ing potential Def. 5.2.1. The Helmholtz equation in (6.16) would be eval-
uated at random sampling points of the 3-D space IR?, with a denser
sampling into the object space () and camera space I'.

An open question is the ill-posedness and convergence of the min-
imization problem (6.16). Obviously, the PINN might be pretrained
with any pre-existing INR of a RI distribution.
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6.7 Appendix

6.7.1 Discrete Volume Reconstruction

It is worth evaluating the performance of INRs for the simple construc-
tion of a continuous interpolation of a known discrete 3D volume be-
fore studying them in the inverse problems related to diffraction to-
mography. The analysis that follows is mainly prospective and exper-
imental, and may be blind to some recent theoretical results that can
characterize the performance of the FFN and SIREN representations.

Learning From Data The adaptation of the weights of the INR, called
the training phase, is not magic. It consists in defining an error function
that includes the output of the network, and then iteratively optimizing
these weights to minimize this error. The reader is encouraged to read
the reminder on automatic differentiation given in Sec. 6.2 to understand
the importance of backpropagation in what follows.

In order to train an INR reconstructing a known discrete 3-D vol-
ume, let us associate a loss function that captures the reconstruction
error of the INR. Let us use f, to denote either f;, or fg. The error

writes
L(f, fp) = 3(f = fg)* (6.17)

The focus is made on the implicit regularization of the INR architec-
tures and weight optimization scheme, so the loss function (6.17) does
not contain any explicit regularization, as usually done when prior in-
formation about the volume to be reconstructed is available.

In the aim to save computations, it is common to update the weights
of a neural network in batches, i.e., for a set B of training pairs (r, f(r))
where f(r) is the volume to reconstruct, to infer the output of the INR
as fy(r), and then to accumulate the error as

Ls(f, fo) = 1 LU(1), fo(r) = 31 f5— f 515
reBB
before backpropagating the error and computing one optimization
step. This is the origin of the term “stochastic” used for the SGD and
Adam optimizers given in Algos 6.1-6.2.

In the following experiments, the Adam optimization algorithm
will be used by default after demonstrating it outperforms SGD. The
initialization of the weights ¢(0) follows [He+15] for the FEN contain-
ing an MLP with ReLU activations and follows [Sit+20] for the SIREN.
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Numerical analysis The goal of the following experiments is to cap-
ture good regimes for the FFN and SIREN. The main parameters tuned
for a volume reconstruction are given in Table 6.3. The number of
epochs epoch is the number of times all voxels of the discrete volume f
are seen during the training phase. The number of batches per epoch is
simply given by max(10°, NyNyN;)/B, with a maximum of one million
voxels per epoch to limit the training time for high resolution volumes.

Table 6.3 Key parameters for the architecture and training of INRs. The spatial fre-
quencies K and the frequency factor w; are respectively specific to the FFN and SIREN
architectures.

Symbol Meaning
L Number of layers.
Archi n Number of hidden neurons at layer I € [L].
rchitecture . . o\ .
K 3-D spatial frequencies of the positional encoding.
K Number of frequencies in K.
wj Frequency factor at layer | € [L].
x Learning rate/stepsize.
Training B Batch size.
Nepoch Number of epochs.

For both architectures, the number of trainable parameters ||¢||o
scales like

-1
lpllo= (Y m(n1+1)) + nou(n—1+1),
1=0

where n; is the number of neurons in the [-th hidden layer, and 74yt
is the number of outputs of the INR; 1oyt = 2 in this work. With the
typical values L = 5 and n; = 256 for | € [L] used in the following
analyses, the number of parameters is approximately ||¢||o &~ 3 10°.

In Fig. 6.12, we compare the optimizers SGD and Adam, given
in Algos 6.1-6.2, respectively. For the discrete volume made of three
spheres shown in Fig. 6.12(a), SGD and Adam are used for the exact
same architecture of an FFN and similarly for a SIREN. For both cases,
it is seen that Adam exhibits a better convergence rate than SGD. This
is in agreement, for this specific case, with the results of [KB14].

Fig. 6.13 provides two separated analyses. In Fig. 6.13(a), it is ob-
served that both the FFN and SIREN have a lower error for small batch
size B values. It can be explained by the higher number of weight
optimization step updates when B is small. However, this plot hides
the training time which is inversely proportional to B. So B repre-
sents a tradeoff between the error value and the training duration. In
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and w; = 5, VI € [1,L]. Both architectures used L = 5 layers containing n; = 256
hidden neurons each and were trained with a learning rate « = 10~° and batch size
B =512.
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a learning rate «# = 107°. (b) Error in function of the number of frequencies K for a
single-layer FFN using & = 10~5 and B = 512.

Fig. 6.13(b), we numerically verify that increasing the number of ran-
dom frequencies K inside the same frequency support in an FFN, even
with only the positional encoding and a linear output layer, decreases
reconstruction error.

Fig. 6.14 studies the dependence of the reconstruction on the fre-
quency support. For the FFN, the frequency factor wy is defined as
the radius in the frequency domain containing 99% of the frequencies
drawn by the Gaussian positional encoding, i.e., the frequencies are
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Fig. 6.14 Reconstruction of S = 4 volumes made of three spheres with random po-

sitions and sizes in ggm 512,64) 35 @ function of the frequency coverage. The FFN and

SIREN are composed of L = 5 layers, n; = 256 hidden neurons V! € [L] and trained
with a batch size B = 256 and learning rate linearly progressing in [107°,1077]. The
hidden frequency factors of the SIREN are w; = 30, VI € [L], and there are K = 2000
frequencies in the Gaussian positional encoding of the FEN. 10° voxels (= 6%) are seen
per epoch. (a) Error in function of the epoch and frequency factor wyp. (b) SNR in func-
tion of wy for a training with 7epocn = 40.

drawn as Kj o N (o, (%)2 I3), Vk € [K]. In Fig. 6.14(a), the curves

show the avefége loss over the reconstruction of the S = 4 different
volumes.

For both FFN and SIREN, there is no frequency factor value that
stands out from the others in terms of reconstruction quality. Fig. 6.14(a)
shows that the SIREN converges much faster than the FFN. However,
the FFN eventually achieves lower error values than the SIREN for a
sufficient number of epochs, which may be due to a better frequency
support achieved by the FFN compared to the SIREN built with the
same frequency factors w; = 30, VI € [L] in the hidden layers. This
guess relies on the structured dictionary perspective of INRs given in
[Yuc+22, Th. 1].

Fig. 6.15 studies the dependence of the reconstruction on the num-
ber of layers L, in a similar setting as in Fig. 6.14. It appears that the
number of layers has a weak influence on the reconstruction quality.
Our guess is that the sharp transitions at the spheres boundaries induce
the Gibbs phenomenon [HH79], where an infinite number of frequencies
would be necessary to properly represent these transitions.

In Fig. 6.16, we show the reconstruction of a granulocyte phantom
created using CytoPacq [Wie+19] and already used in [Liu+22] using a
SIREN architecture. Fig. 6.16(b) indicates a low SNR value. This is due
to the sharp transitions occuring at the granulocytes boundaries. The
SIREN having a finite frequency support (see [Yuc+22, Th. 1]), it suffers
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Fig. 6.15 Reconstruction as a function of the number of layers L with the same con-
figuration as in Fig. 6.14, only for the SIREN architecture, with wy = 75.

from the Gibbs phenomenon, as seen in Fig. 6.16(a). These conclusions
are also valid for the FFN architecture.

The conclusions of this section that will be useful for the experi-
ments coming in Sec. 6.5 are:

m Ignoring the training time, a small batch size B is better.

m The positional encoding of an FFN needs a high number of fre-
quencies.

m The frequency factor wy alone is of little importance.

Based on these conclusions, the default values will be set to B = 256,
K = 2000, and wy = 30.

6.7.2 Implicit Regularization of GD

This section aims to provide a possible explanation for the underesti-
mation of the scattering potential observed in the results presented in
Sec. 6.5.2.

To do so, let us consider a simple linear system Lu = y that needs to
be inverted, where the matrix L € C"*" has a kernel dimension n — k,
for 0 < k < n,y € C" is the observation vector, and u € C is the sought
solution. The minimum energy solution
1 2
min 5 ||Lu — 6.18
men 2 | yll> (6.18)

is a set. Indeed, if u* is a solution, then u* + ker L is the set of solutions.
However, running the Gradient Descent (GD) algorithm on this mini-
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Fig. 6.16 Reconstruction f, of the cytogranulocyte phantom f € 9811215)12 64) used in

[Liu+22]. We use a SIREN with L = 6 layers, n; = 256, VI € [L] hidden neurons per
layer, wy = 75, and w; = 30, VI € [L] trained over fgpocn = 500 with a learning rate
« linearly progressing in [107%,1077], and a batch size B = 256. (a) absolute values of
the GT, reconstruction, and error given for the slices at z € {%, %, %} (b) Evolution of
the SNR with the epochs. (c) Evolution of the loss with the epochs.

2

e and initial condition #(®) = 0 provides

mization for a stepsize a <
a vector

w1 = 40 _ L (Lu® — y) = (I, — «L*L)u® + «L*y.
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Therefore, u(®) = Y% (I, — «aL*L)*aL*y is not a set. Let us further

analyze the obtained solution by expliciting the SVD L = *.
SVD nxk kxk kxn

As V can be factorized on the left-side of the expression of u(*), from
the identity V*V = I, one has u(®) = VV*u(®) Then,

V* (I, —a«L*L)* = V*(I, —a L*L)(I, — aL*L)*"!

kxn
Vv
= (It —a V*L*LV)V*(I,, — aL*L)*!
kxk
= (I — aV*L*LV)kv*,
Therefore,
u®) = vV u(® = v(V*L*LV) " 'V*L*y = V(LV)'y. (6.19)

Eq. (6.19) shows that GD enforces uy,; = 0 if started at u® =0, as
VV* projects on Im (L) with V* then zeropads on ker(L) with V. This
is the implicit reqularization effect. This effect is valid for more general
cases than GD applied to a square linear system as proposed here. As
minimization problems like (6.18) provide a minimum energy solution,
and the true solution has generally a nonzero value in the part of the
information lost by the effect of the measurement operator, this results
in an underestimation.

6.7.3 Linearizing IDT

This section demonstrates how a linear forward model can still be ob-
tained in IDT under the First-Born approximation. This linearization is
not new [Wu+19].

Under the weak scattering assumption us < u;, the validity of the
First-Born approximation is sufficient and the IDT measurements can
be linearized. Indeed, using (FBd) for the (IDT) model, the measure-
ment vector writes

y = |Hu; + HGD, f|?

) ) ) . (6.20)
= |Hu;i|* + |HGD,, f|* + R{2 diag(Hu;)"HGD,, f }.

Removing the background intensity |Ru;|? from the measurements ei-
ther by model estimation or by calibration, and neglecting the quadratic
term |RGD,, f|? because of the weak scattering assumption yields

y =y — |Hu|* ~ R{2diag(Huw)*HGD,, f} = R{Bf}.  (6.21)
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Eq. (6.21) is linear in f regardless of the choice of u;. By separating f
into its real part f, and imaginary part f, it can be modeled equiva-
lently as

y = Bf := [Br Bg] Bjﬂ : (6.22)

Fourier Model Under Planewave llluminations
When the incident field is a planewave U;(r) = ¢l " with incident
wavevector k;, then, as shown in [Wol69], a Weyl expansion of the Green
function G allows to express the linear forward model in the Fourier
domain. In discrete, the forward model can be recast with FFT opera-
tors as

y' = F;'TRaf

where F; takes the 2-D FFT along each transverse XY-slice of f, and
T € C/N«Ny>JNeNyN: g 3 transfer function occuring in the Fourier do-
main that handles the camera pupil mask and the phase modulation
due to the planewave illumination, and sums along the axial Z-axis. In
recent experimental reconstruction results in IDT using the First-Born
approximation [Liu+22; Lin+18], the calibration phase aimed at apply-
ing corrections to T.

This model, considered in [Liu+22; Li+20; MT19], needs planewave
illuminations to be valid. Eventually, the illumination can be modeled
as a finite sum of planewaves which implies a transfer function of the
form T = Y, v Ty Where the illuminating field writes u' = Y, ul,

. : T
with ul, = e7 1k .

284 |



[Bay+18]

[BBO8]

[BCLO2]

[BOCO03]

[Che+20a]

[Che+20Db]

[Dev81]

[Ela+18]

[Fie82]

References

A. G. Baydin et al. “Automatic Differentiation in Machine
Learning: a Survey”. In: Journal of Machine Learning Re-
search 18.153 (2018), pp. 1-43.

P. T. Boufounos and R. G. Baraniuk. “1-Bit compressive
sensing”. In: 2008 42nd Annual Conference on Information
Sciences and Systems. 2008, pp. 16-21. DOI: 10.1109/CISS.
2008.4558487.

H. H. Bauschke, P. L. Combettes, and D. R. Luke. “Phase
retrieval, error reduction algorithm, and Fienup variants:
a view from convex optimization”. In: J. Opt. Soc. Am. A
19.7 (July 2002), pp. 1334-1345. DOI: 10.1364/J0SAA.19.
001334.

G. Bibes, R. Ouvrard, and P. Coirault. “A regulariza-
tion method for nonlinear inverse problems by using

a volterra model”. In: 2003 European Control Conference
(ECC). IEEE. 2003, pp. 2068-2072.

M. Chen et al. “Multi-layer Born multiple-scattering model
for 3D phase microscopy”. In: Optica 7.5 (May 2020),
pp- 394-403. DOI: 10.1364/0PTICA.383030.

Y. Chen et al. “Physics-Informed Neural Networks for In-
verse Problems in Nano-Optics and Metamaterials”. In:
Optics Express 28.8 (2020), pp. 11618-11633. DOI: 10. 1364/
0E.391036.

A.J. Devaney. “Inverse-scattering theory within the Ry-
tov approximation”. In: Opt. Lett. 6.8 (Aug. 1981), pp. 374—
376. DOI: 10.1364/0L.6.000374.

N. Eladawi et al. “Classification of retinal diseases based
on OCT images”. In: Front Biosci 23.2 (2018), pp. 247-264.

J. R. Fienup. “Phase retrieval algorithms: a comparison”.
In: Appl. Opt. 21.15 (Aug. 1982), pp. 2758-2769. DOTI: 10.
1364/A0.21.002758.

| 285


https://doi.org/10.1109/CISS.2008.4558487
https://doi.org/10.1109/CISS.2008.4558487
https://doi.org/10.1364/JOSAA.19.001334
https://doi.org/10.1364/JOSAA.19.001334
https://doi.org/10.1364/OPTICA.383030
https://doi.org/10.1364/OE.391036
https://doi.org/10.1364/OE.391036
https://doi.org/10.1364/OL.6.000374
https://doi.org/10.1364/AO.21.002758
https://doi.org/10.1364/AO.21.002758

6 | References

[GWO02]

[Ham+07]

[He+15]

[HH79]

[JG15]

[Kam+15]

[Kam+16a]

[Kam+16b]

[KB14]

[Kim11]

[KSO01]

286 |

G. Gbur and E. Wolf. “Diffraction tomography with-
out phase information”. In: Opt. Lett. 27.21 (Nov. 2002),
pp. 1890-1892. DOI: 10.1364/0L. 27 .001890.

U. Hampel et al. “High resolution gamma ray tomogra-
phy scanner for flow measurement and non-destructive
testing applications”. In: Review of scientific instruments
78.10 (2007).

K. He et al. “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”.
In: Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV). 2015, pp. 1026-1034. DOI: 10 . 1109/
ICCV.2015.123.

E. Hewitt and R. Hewitt. “The Gibbs-Wilbraham Phe-
nomenon: An Episode in Fourier Analysis”. In: Archive for
History of Exact Sciences 21.2 (1979), pp. 129-160.

M. H. Jenkins and T. K. Gaylord. “Three-dimensional
quantitative phase imaging via tomographic deconvolu-
tion phase microscopy”. In: Appl. Opt. 54.31 (Nov. 2015),
pp- 9213-9227. DOI: 10.1364/A0.54.009213.

U. S. Kamilov et al. “Learning approach to optical tomog-
raphy”. In: Optica 2.6 (June 2015), pp. 517-522. DOI: 10.
1364/0PTICA.2.000517.

U. S. Kamilov et al. “A Recursive Born Approach to Non-
linear Inverse Scattering”. In: IEEE Signal Processing Let-
ters 23.8 (2016), pp. 1052-1056. 1SSN: 10709908. DOI: 10 .
1109/LSP.2016.2579647. arXiv: 1603.03768.

U. S. Kamilov et al. “Optical Tomographic Image Recon-
struction Based on Beam Propagation and Sparse Regu-
larization”. In: IEEE Transactions on Computational Imaging
2.1 (2016), pp. 59-70. DOI: 10.1109/TCI.2016.2519261.

D. P. Kingma and J. Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

M. K. Kim. Digital Holographic Microscopy: Principles, Tech-
niques, and Applications. New York: Springer, 2011. ISBN:
978-1-4419-7792-2.

A. C. Kak and M. Slaney. Principles of computerized to-
mographic imaging. Reprint of 1988 IEEE Press edition.
Bellingham, WA: Society of Photo-Optical Instrumenta-
tion Engineers (SPIE), 2001.


https://doi.org/10.1364/OL.27.001890
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1364/AO.54.009213
https://doi.org/10.1364/OPTICA.2.000517
https://doi.org/10.1364/OPTICA.2.000517
https://doi.org/10.1109/LSP.2016.2579647
https://doi.org/10.1109/LSP.2016.2579647
https://arxiv.org/abs/1603.03768
https://doi.org/10.1109/TCI.2016.2519261

References | 6.7

[Li+20] J. Li et al. “High-speed in vitro intensity diffraction to-
mography”. In: 200 (2020). arXiv: arXiv:1904.06004v3.

[Lim+15] J. Lim et al. “Comparative study of iterative reconstruc-
tion algorithms for missing cone problems in optical
diffraction tomography”. In: Opt. Express 23.13 (June 2015),
pp- 16933-16948. DOI: 10.1364/0E.23.016933.

[Lim+19]  ].Lim et al. “High-fidelity optical diffraction tomography
of multiple scattering samples”. In: Light: Science & Appli-
cations 8 (Sept. 2019). DOI: 10.1038/s41377-019-0195-1

[Lin+18] R. Ling et al. “High-throughput intensity diffraction to-
mography with a computational microscope”. In: Biomed.
Opt. Express 9.5 (May 2018), pp. 2130-2141. DOI: 10. 1364/
BOE.9.002130

[Liu+18] H.-Y. Liu et al. “SEAGLE: Sparsity-Driven Image Recon-
struction Under Multiple Scattering”. In: IEEE Transac-
tions on Computational Imaging 4.1 (2018), pp. 73-86. DOL:
10.1109/TCI.2017.2764461.

[Liu+22] R. Liu et al. “Recovery of continuous 3D refractive in-
dex maps from discrete intensity-only measurements us-
ing neural fields”. In: Nature Machine Intelligence 4.9 (Sept.
2022), pp- 781-791. 1SSN: 2522-5839. DOTI: 10. 1038/542256 -
022-00530-3.

[Ma+18] Y. Ma et al. “Accelerated Image Reconstruction for Non-
linear Diffractive Imaging”. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
2018, pp. 6473-6477. DOI: 10 . 1109 / ICASSP . 2018 .
8462400.

[Mar+21] J. N. P. Martel et al. ACORN: Adaptive Coordinate Networks
for Neural Scene Representation. 2021. arXiv: 2105.02788.

[MCWO05] P Y. Maeda, P. B. Catrysse, and B. A. Wandell. “Integrat-
ing Lens Design with Digital Camera Simulation”. In: Pro-
ceedings of SPIE - The International Society for Optical En-
gineering. Vol. 5678. 2005, pp. 48-58. DOI: 10.1117/12.
588153.

[MI07] G. Mobus and B. J. Inkson. “Nanoscale tomography in
materials science”. In: Materials Today 10.12 (2007), pp. 18-
25.

| 287


https://arxiv.org/abs/arXiv:1904.06004v3
https://doi.org/10.1364/OE.23.016933
https://doi.org/10.1038/s41377-019-0195-1
https://doi.org/10.1364/BOE.9.002130
https://doi.org/10.1364/BOE.9.002130
https://doi.org/10.1109/TCI.2017.2764461
https://doi.org/10.1038/s42256-022-00530-3
https://doi.org/10.1038/s42256-022-00530-3
https://doi.org/10.1109/ICASSP.2018.8462400
https://doi.org/10.1109/ICASSP.2018.8462400
https://arxiv.org/abs/2105.02788
https://doi.org/10.1117/12.588153
https://doi.org/10.1117/12.588153

6 | References

[Mil+20] B. Mildenhall et al. “NeRF: Representing Scenes as Neu-
ral Radiance Fields for View Synthesis”. In: (2020). arXiv:
2003.08934 [cs.CV].

[MJR23] S. Moser, A. Jesacher, and M. Ritsch-Marte. “Efficient and
accurate intensity diffraction tomography of multiple-
scattering samples”. In: Opt. Express 31.11 (May 2023),
pp. 18274-18289. DOI: 10.1364/0E . 486296.

[MS09] K. Matsushima and T. Shimobaba. “Band-limited angu-
lar spectrum method for numerical simulation of free-
space propagation in far and near fields”. In: Optics Ex-
press 17.22 (2009), pp. 19662-19673. DOI: 10.1364/0E.17.
019662.

[MSW12] S. C. Mayo, A. W. Stevenson, and S. W. Wilkins. “In-line
phase-contrast X-ray imaging and tomography for mate-
rials science”. In: Materials 5.5 (2012), pp. 937-965.

[MT19] A. Matlock and L. Tian. “High-throughput, volumet-
ric quantitative phase imaging with multiplexed inten-
sity diffraction tomography”. In: Biomedical Optics Express
10.12 (2019), p. 6432. 1SSN: 2156-7085. DOI: 10. 1364 /boe .
10.006432.

[Muil+22]  T. Miller et al. “Instant neural graphics primitives with a
multiresolution hash encoding”. In: ACM Transactions on
Graphics 41.4 (July 2022), pp. 1-15. ISSN: 1557-7368. DOI:
10.1145/3528223.3530127.

[Ngu+17]  T. Nguyen et al. “Gradient light interference microscopy
for 3D imaging of unlabeled specimens”. In: Nature Com-
munications 8 (Dec. 2017). DOI: 10 . 1038/ s41467 - 017 -
00190-7.

[Pha+18] T.-a. Pham et al. “Phaseless diffraction tomography with
regularized beam propagation”. In: Apr. 2018, pp. 1268—
1271. DOI: 10.1109/ISBI.2018.8363802.

[Pha+20] T.-a. Pham et al. “Three-Dimensional Optical Diffrac-
tion Tomography With Lippmann-Schwinger Model”. In:
IEEE Transactions on Computational Imaging 6 (2020), pp. 727-
738. DOI: 10.1109/TCI.2020.2969070.

[PRG16] A. du Plessis, S. G. le Roux, and A. Guelpa. “Compari-
son of medical and industrial X-ray computed tomogra-
phy for non-destructive testing”. In: Case Studies in Non-
destructive Testing and Evaluation 6 (2016), pp. 17-25.

288 |


https://arxiv.org/abs/2003.08934
https://doi.org/10.1364/OE.486296
https://doi.org/10.1364/OE.17.019662
https://doi.org/10.1364/OE.17.019662
https://doi.org/10.1364/boe.10.006432
https://doi.org/10.1364/boe.10.006432
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1038/s41467-017-00190-7
https://doi.org/10.1038/s41467-017-00190-7
https://doi.org/10.1109/ISBI.2018.8363802
https://doi.org/10.1109/TCI.2020.2969070

References | 6.7

[Reb+15] G. Rebolleda et al. “OCT: new perspectives in neuro-
ophthalmology”. In: Saudi Journal of Ophthalmology 29.1
(2015), pp. 9-25.

[Ros58] E. Rosenblatt. “The perceptron: a probabilistic model for
information storage and organization in the brain”. In:
Psychological review 65.6 (1958), p. 386.

[RPK19] M. Raissi, P. Perdikaris, and G. Karniadakis. “Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations”. In: Journal of Compu-
tational Physics 378 (2019), pp. 686—707. 1SSN: 0021-9991.
DOI: https://doi.org/10.1016/3.jcp.2018.10.045.

[She+14] Y. Shechtman et al. Phase Retrieval with Application to Opti-
cal Imaging. 2014. arXiv: 1402.7350.

[Sit+20] V. Sitzmann et al. “Implicit Neural Representations with
Periodic Activation Functions”. In: arXiv. 2020.

[SPU17] E. Soubies, T.-A. Pham, and M. Unser. “Efficient inversion
of multiple-scattering model for optical diffraction to-
mography”. In: Opt. Express 25.18 (Sept. 2017), pp. 21786~
21800. DOI: 10.1364/0E.25.021786

[SXK18] Y. Sun, Z. Xia, and U. S. Kamilov. “Efficient and accurate
inversion of multiple scattering with deep learning”. In:
Opt. Express 26.11 (May 2018), pp. 14678-14688. DOI: 10.
1364/0E.26.014678.

[Tan+20] M. Tancik et al. “Fourier Features Let Networks Learn

High Frequency Functions in Low Dimensional Domains”.
In: arXiv preprint arXiv:2006.10739 (2020).

[TDO0] G. Tsihrintzis and A. Devaney. “Higher order (nonlinear)
diffraction tomography: inversion of the Rytov series”.
In: IEEE Transactions on Information Theory 46.5 (2000),
pp. 1748-1761. DOT: 10.1109/18.857788.

[TW15] L. Tian and L. Waller. “3D intensity and phase imaging
from light field measurements in an LED array micro-
scope”. In: Optica 2.2 (Feb. 2015), pp. 104-111. DOI: 10 .
1364/0PTICA.2.000104.

[Wie+19] D. Wiesner et al. “CytoPacq: a web-interface for simu-
lating multi-dimensional cell imaging”. In: Bioinformatics
35.21(2019), pp. 4531-4533. DOI: 10.1093/bioinformatics/
btz417.

| 289


https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/1402.7350
https://doi.org/10.1364/OE.25.021786
https://doi.org/10.1364/OE.26.014678
https://doi.org/10.1364/OE.26.014678
https://doi.org/10.1109/18.857788
https://doi.org/10.1364/OPTICA.2.000104
https://doi.org/10.1364/OPTICA.2.000104
https://doi.org/10.1093/bioinformatics/btz417
https://doi.org/10.1093/bioinformatics/btz417

6 | References

[Wol69]

[Wu+19]

[Yuc+22]

[ZBG24]

[ZH20]

[ZWT22]

290 |

E. Wolf. “Three-dimensional structure determination of
semi-transparent objects from holographic data”. In: Op-
tics Communications 1.4 (1969), pp. 153-156. 1SSN: 0030-
4018. DOT: https://doi.org/10.1016/0030-4018(69)
90052-2.

Z. Wu et al. “SIMBA: Scalable Inversion in Optical To-
mography Using Deep Denoising Priors”. In: IEEE Journal
of Selected Topics in Signal Processing 14 (2019), pp. 1163—
1175.

G. Yuce et al. “A Structured Dictionary Perspective on Im-
plicit Neural Representations”. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition 2022-June (2022), pp. 19206-19216. 1SSN:
10636919. DOI: 10.1109/CVPR52688 . 2022 . 01863. arXiv:
2112.01917.

C. Zeng, T. Burghardt, and A. M. Gambaruto. RBF-PINN:
Non-Fourier Positional Embedding in Physics-Informed Neu-
ral Networks. 2024. arXiv: 2402.08367.

K. C. Zhou and R. Horstmeyer. “Diffraction tomography
with a deep image prior”. In: Opt. Express 28.9 (Apr. 2020),
pp. 12872-12896. DOI: 10.1364/0E. 379200.

J. Zhu, H. Wang, and L. Tian. “High-fidelity intensity
diffraction tomography with a non-paraxial multiple-
scattering model”. In: Opt. Express 30.18 (Aug. 2022),
pp. 32808-32821. DOI: 10.1364/0E . 469503.


https://doi.org/https://doi.org/10.1016/0030-4018(69)90052-2
https://doi.org/https://doi.org/10.1016/0030-4018(69)90052-2
https://doi.org/10.1109/CVPR52688.2022.01863
https://arxiv.org/abs/2112.01917
https://arxiv.org/abs/2402.08367
https://doi.org/10.1364/OE.379200
https://doi.org/10.1364/OE.469503

Conclusion

7.1 Summary of the Chapters

In this dissertation, as summarized in Fig. 7.1, we have extended the
field of computational imaging in two main directions:

m Compressive interferometric imaging: compressive imaging
techniques for multicore fiber lensless imaging in Chap. 3 and
radio-interferometry in Chap. 4.

m Diffraction tomography: review of the different ways to model
electromagnetic wave diffraction through inhomogeneous media
in Chap. 5 and combination of an implicit neural representation and
a nonlinear (multiple-scattering) sensing model in Chap. 6.

In this section, we summarize the contributions of each chapter in a few
paragraphs below. The discussions and perspectives of each chapter
are synthesized in Fig. 7.1.

Chapter 3: Multi-Core Fiber Lensless Imaging

Chapter 3 presented advancements in the field of MCFLI. Our research
began by leveraging a speckle illumination model to underscore the in-
terferometric nature of the MCF device. This foundational insight led
to the development of a sensing model more closely aligned with the
physical principles underlying MCFLI. This approach provided clear
explanations for previously considered illumination modes and core
arrangement designs from an interferometric perspective.

Further, we expanded the modeling of MCFLI by incorporating the
physics of light propagation. This enhanced model revealed that the
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Chap. 3: Rank-One Compression Chap. 5: Diffraction Through
of Interferometric Sensing Inhomogeneous Media
o Interferometric analysis of MCFLI e Contrast-dependent convergence rate
o Efficient SROP debiasing
e Rank-one projected interferometric sensing

e Recovery guarantess
e Simplified calibration

? Preconditioning
? Vectorial 3-D diffractive imaging
? Continuous diffraction with PINNs

? Recovery guarantees for general sparsifying
basis

? Experiments in reflection/fluorescence Chap. 6: Diffraction Tomography with
? 3-D imaging Implicit Neural Representations
? Multimode fiber lensless imaging o Multiple-scattering with INR

e Extensive numerical analyzes

Chap. 4: Compressive Radio-Interferometry 2 Rotation of noncubic volumes

e Random beamforming ? Improved reconstruction with passive sources
e Modulations of ROPs ? Diffraction tomography with speckle

e Recovery guarantees illuminations

e Numerical proof-of-concept ? First-Born to Lippmann-Schwinger calibration
? Joint calibration and imaging EAn e

? Recovery guarantees for modulated ROPs

? Visibility weighting Legend: Contribution Perspective

Fig. 7.1 Summary of the contributions and potential perspectives of this thesis.

accuracy of sensing a 2-D refractive index map is constrained by both
the number M of applied illuminations and the number Q and arrange-
ment of cores at the distal end of the MCF.

We provided uniform image recovery guarantees under realistic as-
sumptions, which were validated through numerical phase transition
diagrams. These theoretical settings were extended to more realistic
image recovery in actual experimental setups. Observing the derived
sample complexities in both numerical and experimental conditions
confirmed the robustness and practicality of our model.

In summary, this chapter not only deepened theoretical under-
standing and provided practical validation for MCFLI but also empha-
sized the critical role of interferometric principles and light propaga-
tion physics in enhancing the design and application of multi-core fiber
imaging systems.

Chapter 4: Compressive Radio-Interferometry.

In Chapter 4, we transferred and extended the contributions of Chap-
ter 3 to another interferometric imaging modality: Radio-Interferometry.
Initially, we re-explained the conventional imaging principle, which re-
lied on the covariance matrix of the measurement vector and was intrin-
sically related to Fourier subsampling of the image of interest. The sig-
nificant advancement presented in this chapter was the introduction of
a novel approach where a random projection of the measurement vec-
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tor, known as random beamforming, was computed before determining
its covariance. This approach resulted in getting random rank-one pro-
jections of the covariance matrix, enabling the reuse of methodologies
from Chapter 3 to achieve compressive radio-interferometric imaging.

The novelty of this compression scheme lay in its ability to reduce
all computational costs: (i) computations during acquisition, (ii) the
number of measurements, and (iii) the computation of the forward
model. This efficiency was crucial for practical applications, making
the technique both scalable and effective.

Similarly to the previous chapter, we provided uniform recovery
guarantees and validated them numerically through phase transition
diagrams. Additional numerical analyses were conducted in a state-
of-the-art realistic simulation setting.

In summary, this chapter extended the theoretical and practical ad-
vancements in radio-interferometric imaging, offering a computation-
ally efficient and robust framework. This work paved the way for fur-
ther innovations in compressive imaging techniques, with potential ap-
plications to other interferometric imaging modalities.

Chapter 5: Diffraction Through Inhomogeneous Media

This chapter contributed to the intricate modeling of diffraction to-
mography, particularly focusing on electromagnetic wave propagation
through inhomogeneous 3-D refractive index distributions. Given the
complexity and vastness of the topic, this chapter primarily addressed
the foundational aspects of the diffraction model.

We began by revisiting the key simplifying assumptions underlying
the Helmholtz equation and its integral form tailored for inhomogeneous
media, known as the Lippmann-Schwinger equation. This exact nonlinear
equation was compared with other prevalent scattering models, high-
lighting their status as approximations. Special attention was given to
the First-Born approximation, which, through the Fourier Diffraction the-
orem, offers a clear perspective on the information captured in tomo-
graphic imaging scenarios.

Subsequently, we focused on an efficient discretization of the Lippmann-
Schwinger model. The resultant linear system was thoroughly ana-
lyzed using first-order optimization methods. Our numerical experiments
underscored the impact of the refractive index distribution’s contrast on
the condition number of the linear system.

| 293



7 | Conclusion

Chapter 6: Diffraction Tomography with Implicit Neural Represen-
tations

In Chapter 6, we built upon the results of Chapter 5 to establish a com-
prehensive setting for diffraction tomography, incorporating implicit
neural representations (INRs).

The first distinctive feature of this chapter is the continuous repre-
sentation of the 3-D image using an INR. This approach offers several
advantages: (i) it provides a reduced parameterization of the image, (ii)
it facilitates the handling of continuous 3-D rotations, and (iii) it enables
automatic image reconstruction through automatic differentiation and
gradient backpropagation.

Another significant aspect of this chapter is the focus on nonlin-
ear sensing models for optical and intensity diffraction tomography (resp.
ODT and IDT). These nonlinear models offer a novel perspective com-
pared to the linear approximations related to the First-Born approxima-
tion discussed previously. Through numerical simulations, we demon-
strated that the nonlinearity of the sensing model, closer to reality, en-
hances image recovery quality.

7.2 Future Work and Comments

Bridging Chap. 3-4 with Chap. 5-6

3-D interferometric imaging Chap. 3-4 assume that the object of in-
terest is purely 2-D which is an oversimplification in both cases. For
MCFLI, assuming that (i) the 3-D fluorophore density map does not in-
fluence the 3-D speckle produced by the MCEF, and that (ii) the far-field
assumption still holds, which implies that the speckle is completely de-
velopped and varies with the depth only by a scaling, a single-pixel
measurement is equivalent to a projection of a 2-D speckle with the
projection of the 3-D map along expanding line over the depth-axis.
Similarly to the context of Chap. 5-6, this corresponds to a loss of in-
formation in depth. In this case, the information in depth can only be
recovered by illuminating the sample of interest from different orienta-
tions, resulting in another tomographic imaging context.

Conversely, any tomographic imaging scenario could be adapted to
utilize speckle-based illumination, leading to a combined interferometric
and tomographic imaging problem.
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Learning techniques The use of deep learning was only introduced
in Chap. 6. Notably, the neural architecture employed for the Implicit
Neural Representation (INR) is designed not as a data-driven learn-
ing modality, but to deliver an efficient continuous representation of
a 3D volume. While Chap. 3-4 primarily concentrated on the acquisi-
tion and imaging models inherent in the compressive imaging schemes,
and Chap. 5-6 explored the innovative integration of an INR with
a nonlinear sensing model, their synergy with advanced reconstruc-
tion techniques, such as deep denoisers [VBW13; KMW18] or those that
learn the distribution of signals for specific applications, remains intact.
Moreover, Sec. 4.7 elucidates that the proposed compressive model for
radio-interferometry is compatible with two recent state-of-the-art re-
construction algorithms: AIRI and R2D2.

About automatic differentiation Chap. 6 introduced automatic dif-
ferentiation (AD) and outlined in Sec. 6.1 its utility in automatically
computing the gradient of a loss function with respect to the prob-
lem’s parameters (e.g., image pixels), thereby bypassing the tedious
task of manual gradient derivation. AD extends beyond first-order
derivatives, enabling the computation of second-order derivatives re-
quired for advanced optimization methods like the Newton method in
(Newton). While AD was not explicitly necessary in Chap. 3-4 due to
the />-norm data fidelity term in image reconstruction, which primarily
required the adjoint operator, it could still have been employed. This
highlights that AD is not always essential, particularly when straight-
forward, closed-form gradient expressions are available.

Other applications of compressive interferometric imaging

Chap. 3 and Chap. 4 presented two imaging applications which share
the same conditions to yield an interferometric model: (i) several el-
ements must interfere, and (ii) incoherence'. In Chap. 3, the interfero-
metric model was the result of a fluorescence phenomenon, making the
sample of interest interact incoherently with the illumination of the MCE.
In Chap. 4, it was due to the Van Cittert-Zernike theorem and the inco-
herence of the cosmic sources, i.e., the statistical independence between
the cosmic signals coming from distinct directions.

There exist other computational imaging applications with incoher-
ent illumination such as fluorescence microscopy or X-ray and Gamma-

f the object interacts coherently with the illumination, this results in a phase re-
trieval problem [CSV13].
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ray imaging. The contributions of Chap. 3-4 could be applied to these
applications as long as multiple illuminating components interfere to
produce the illumination.

In a broader context, in line with Chap. 4, our compressive sensing
proposition might be useful for any existing application that involve
a covariance matrix whose entries are associated to a subsampling (not
necessarily in Fourier) of the image of interest.
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Automatic Differentiation (p. 254

AS

Angular Spectrum (p. 261

BPDN
BPM

Basis Pursuit DeNoise (p. 39

Beam Propagation Method (p. 236

Cl

CS

Computational Imaging (p. 2

Compressive Sensing (p. 47

DFT

Discrete Fourier Transform (p. 81

DNN

FB

Deep Neural Network (p. 127

First-Born (p. 210

FFN

FFT

GT

Fast Fourier Transform (p. 6

Ground Truth (p. 102

IDT

Intensity Diffraction Tomography (p. 251

LS

Inverse Problem (p. 3

Lippmann-Schwinger (p. 203

MAP

Maximum A Posteriori (p. 39

MCFLI
MLP

MultiCore Fiber Lensless Imaging (p. 66

MultiLayer Perceptron (p. 257

MMF

MultiMode Fiber (p. 69

MRI

)
)
)
)
)
)
)
)
)
Fourier Feature Network (p. 252)
)
)
)
)
)
)
)
)
)
)

Magnetic Resonance Imaging (p. 1
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NA Numerical Aperture (p. 98)
NUFFT NonUniform Fast Fourier Transform (p. 125)
OoDT Optical Diffraction Tomography (p. 251)
PGM Proximal Gradient Method (p. 43)
PINN Physics-Informed Neural Network (p. 252)
PnP Plug-and-Play (p. 179)
PR Phase Retrieval (p. 68)
PSF Point-Spread Function (p. 183)
ReLU Rectified Linear Unit (p. 257)
RI Radio-Interferometry (p. 121)
RIP Restricted Isometry Property (p. 50)
ROP Rank-One Projection (p. 65)
ROPI Rank-One Projected Interferometry (p. 81)
RS Raster-Scanning (p. 66)
SGD Stochastic Gradient Descent (p. 256)
SIREN SInusoidal REpresentation Network (p. 252)
SLM Spatial Light Modulator (p. 67)
SNR Signal-to-Noise Ratio (p. 45)
SROP Symmetric Rank-One Projection (p. 65)
SSNP Split-Step Non Paraxial (p. 237)
SVvD Singular Value Decomposition (p. 30)
TV Total-Variation (p. 38)
VCZ Van Cittert-Zernike (p. 131)
VDS Variable Density Sampling (p. 68)
WPM Wave Propagation Method (p. 237)
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