The ideal constant stepsize of gradient descent
In the aim to compute an approximate solution to the linear inverse problem $\bs{Ax}=\bs y$ with $\bs A \in \Rbb^{n\times n}$ of rank $r \leq n$, one is interested in evaluating the loss \(\cl L (\bs x^{(k)}, \bs y) = \tinv 2 \|\bs A \bs x^{(k)} -\bs y\|_2^2\) when $\bs x^{(k)}$ is the $k$-th iterate of the Gradient Descent algorithm with zero initialization. It writes $\bs x^{(k)} = \sum_{i=0}^k (\bs I-\alpha \bs A^* \bs A)^i \alpha \bs A^* \bs y$, and writing the SVD decomposition \(\bs A := \bs U \bs \Sigma \bs V^*\) with the properties $\bs V^* \bs V = \bs I_r$ and $\bs U^* \bs U = \bs I_r$, one gets
\[\begin{align*} \bs A \bs x^{(k)} &= \sum_{i=0}^k \bs U \bs \Sigma \bs V^* (\bs I_n - \alpha \bs V \bs\Sigma^2 \bs V^*) (\bs I_n - \alpha \bs A^* \bs A)^{i-1} \alpha \bs A^* \bs y \\ &= \sum_{i=0}^k \bs U \bs \Sigma (\bs I_r - \alpha \bs\Sigma^2) \bs V^* (\bs I_n - \alpha \bs A^* \bs A)^{i-1} \alpha \bs A^* \bs y \\ &= \sum_{i=0}^k \bs U \bs \Sigma (\bs I_r - \alpha \bs\Sigma^2)^i \bs V^* \alpha \bs A^* \bs y \\ &= \bs U \bs\Sigma \underbrace{\sum_{i=0}^k (\bs I_r - \alpha \bs\Sigma^2)^i}_{(\alpha \bs\Sigma^2)^{-1} (\bs I_r - (\bs I_r - \alpha \bs\Sigma^2)^{k+1})} \alpha \bs\Sigma \bs U^* \bs y \\ &= \bs U \bs\Sigma^{-1} (\bs I_r - (\bs I_r - \alpha \bs\Sigma^2)^{k+1}) \bs\Sigma \bs U^* \bs y \\ &= \bs U (\bs I_r - (\bs I_r - \alpha \bs\Sigma^2)^{k+1}) \bs U^* \bs y. \end{align*}\]Hence,
\[\begin{align} \label{eq:loss} \begin{split} \cl L (\bs x^{(k)}, \bs y) &= \tinv 2 \bigg\|\underbrace{(\bs U \bs U^* - \bs I_n) \bs y}_{\perp \text{Im } \bs U } - \bs U \diag \bigg( 1-\eta \big( \frac{\sigma_i}{\sigma_{\mathrm{max}}} \big)^2 \bigg)^{k+1} \bs U^* \bs y \bigg\|_2^2 \\ &= \tinv 2 \bigg\| (\bs U \bs U^* - \bs I_n) \bs y \bigg\|_2^2 + \tinv 2 \bigg\| \bs U \diag \bigg( 1-\eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2 \bigg)^{k+1} \bs U^* \bs y \bigg\|_2^2 \\ &= \tinv 2 \bigg\| (\bs U \bs U^* - \bs I_n) \bs y \bigg\|_2^2 + \tinv 2 \bigg\| \diag \bigg( 1-\eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2 \bigg)^{k+1} \bs U^* \bs y \bigg\|_2^2 \\ &\leq \tinv 2 \bigg\| (\bs U \bs U^* - \bs I_n) \bs y \bigg\|_2^2 + \tinv 2 \max_{i \in \upto{r}} \bigg| 1- \eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2 \bigg|^{2(k+1)} \big\| \bs U^* \bs y \big\|_2^2. \end{split} \end{align}\]with \(\alpha \triangleq \frac{\eta}{\|\bs A\|^2}.\) The third line is obtained from the second line by using the identity
\[\|\bs{UM} \|_2^2=\langle \bs U \bs M, \bs U \bs M \rangle = \langle \bs U^* \bs U \bs M, \bs M \rangle = \langle \bs M, \bs M \rangle=\|\bs M \|_2^2.\]By convention $\sigma_{\mathrm max} = \sigma_1$. In \eqref{eq:loss}, the first error term is independent of $k$. One cannot do better than targetting the fastest convergence to zero of the second term. For a fixed stepsize $\eta$, the best choice must satisfy
\[\begin{align*} \min_\eta \max_{i \in \upto{r} } \bigg| 1- \eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2 \bigg| &= \min_\eta \max \bigg( \max_{i \in \upto{r} } 1- \eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2, \max_{i \in \upto{r} } \eta \big( \frac{\sigma_i}{\sigma_{\rm max}} \big)^2 -1 \bigg) \\ &= \min_\eta \max \bigg( 1- \eta \big( \frac{\sigma_r}{\sigma_{\rm max}} \big)^2,\eta -1 \bigg) \end{align*}\]which is reached when
\[\begin{align} \label{eq:eta} \begin{split} &1 - \eta \big( \frac{\sigma_r}{\sigma_{\rm max}} \big)^2 = \eta - 1 \\ \Leftrightarrow ~& \eta = \frac{2}{1+(\sigma_r/\sigma_1)^2}. \end{split} \end{align}\]In particular, injecting \eqref{eq:eta} into \eqref{eq:loss} yields
\[\begin{align*} \cl L_k (\bs x^{(k)}, \bs y) &\leq \tinv 2 \bigg\| (\bs U \bs U^* - \bs I_n) \bs y \bigg\|_2^2 + \tinv 2 \big| \eta - 1 \big|^{2(k+1)} \big\| \bs U^* \bs y \big\|_2^2 \\ &= \tinv 2 \bigg\| (\bs U \bs U^* - \bs I_n) \bs y \bigg\|_2^2 + \tinv 2 \bigg| \frac{1-(\sigma_r/\sigma_1)^2 }{1+(\sigma_r/\sigma_1)^2} \bigg|^{2(k+1)} \big\| \bs U^* \bs y \big\|_2^2, \end{align*}\]meaning that the decreasing of the loss with the iterations of the gradient descent is slower when $\sigma_r \ll \sigma_1$.

Figure 1: Gradient Descent iterations as a function of the stepsize for the system $\bs A \bs x = \bs y$ with $\bs A \in \Rbb^{30\times 30}$ of rank $r=5$.
In this experiment, the ideal choice following \eqref{eq:eta} was $\eta^\star = 1.26$.